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ABSTRACT
Stress has emerged and continues to be a regular obstacle in
people’s lives. When left ignored and untreated, it can lead
to many health complications, including an increased risk of
death. In this study, we propose a foundationmodel approach
for stress detection without the need to train the model from
scratch. Specifically, we utilise the foundation model "Neuro-
GPT", which was trained on a large open dataset (TUH EEG)
with 20,000 EEG recordings. We fine-tune the model for
stress detection and evaluate it on a 40-subject open stress
dataset. The evaluation results with a fine-tuned Neuro-GPT
are promising with an average accuracy of 74.4% in quanti-
fying "low-stress" and "high-stress". We also conducted ex-
periments to compare the foundation model approach with
traditional machine learning methods and highlight several
observations for future research in this direction.
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1 INTRODUCTION
In recent years, stress has emerged as a major public health
issue. The fast-paced nature of contemporary life, coupled
with increasing demands in both personal and professional
spheres, has led to heightened stress levels globally. A 2023
survey of adults in England found that the proportion report-
ing severe levels of distress increased by 46% between 2020
and 2022 [1]. The WHO [2] briefed a 25% increase in global
mental health prevalence in the first year of the COVID-19
pandemic due to multiple stress factors. Prolonged exposure
to stress is known to have detrimental and far-reaching ef-
fects on our health. These can be both physical, for example
affecting the cardiovascular, immune and gastrointestinal
systems [3], or mental altering cognitive function and lead-
ing to the development of anxiety disorders and depression
[4]. Moreover, data from AXA UK and the Centre of Eco-
nomic and Business Research indicates that work-induced
stress alone costs the UK economy £28 billion per year [5].
There is a pressing need for effective monitoring, early de-
tection, and intervention strategies to mitigate its adverse
effects on individuals and society.

Key to improving our approaches to stress management is
understanding the neural patterns that underpin the stress
response. Real-time Electroencephalography (EEG) monitor-
ing is a non-invasive and widely used way of exploring the
brain activity associated with stress. EEG time-series data
can be converted to reveal the proportion of frequencies that
make up the signal. This can provide insight into the mental
state of the subject undergoing the stress stimuli and allows
the identification of neural patterns. However, due to the
inherent variability and complexity of EEG datasets, classi-
fying and interpreting the data has remained a major chal-
lenge. Traditional analytical methods such as time-frequency
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distributions and wavelet transform [6] have been used his-
torically with some success but often struggle to handle the
variable and dynamic characteristics of the data effectively.

Until recently, machine learning in physiological sensing
systems has been specialised tools, i.e. trained to perform
a certain task, such as epileptic seizure detection [7], pain
quantification [8], or drowsiness monitoring [9], etc. This
approach, however, faces a fundamental challenge. Large
amounts of data are required to be collected for each tar-
geted application, which is both labour-intensive and time-
consuming. Furthermore, reusing previously collected datasets
is not possible if the targeted applications or experiment se-
tups are different.
This paper explores the foundation model approach in

stress detection using EEG signals. The developed method
aims to provide an objective and accurate model to quantify
stress levels by leveraging a pre-trained foundation model on
a large and publicly available EEG dataset, thus, eliminating
the need for training the model from scratch. We make the
following contributions.
(1) We explored the application of Neuro-GPT [10], a foun-

dation model trained on a large open dataset (TUH EEG)
[11] with 20,000 EEG recordings and fine-tuned it for
stress detection.

(2) We conducted the evaluation on a publicly available
dataset of 40 subject EEG recordings [12] exposed to
stress stimuli. The results are promising with an aver-
age accuracy of 74.4%. We also conducted experiments
to compare the foundation model approach with tradi-
tional machine learning methods and highlight several
observations for future research in this direction.

2 METHODOLOGY
In this study, we employ the SAM40 public stress EEG dataset
[8] to fine-tune the Neuro-GPT foundation model.

2.1 Data Pre-processing
Dataset Overview. The SAM 40 EEG dataset is a collec-
tion of electroencephalogram data obtained from 40 subjects,
who have undergone cognitive tasks known to induce stress
using a 32-electrode Emotiv Epoc Flex gel kit. The tasks were
the identification of symmetry in mirror images, arithmetic
equations, Stroop colour-word test and a period of relax-
ation. Each task lasted 25 seconds and was repeated thrice,
producing a total of 480 samples. The subjects were also
asked to self-report their stress level for each stress-inducing
task on a 1 to 10 scale. The pre-processed data, provided by
Ghosh et al. 2022 [8], was utilised in this study. This data
was pre-processed with band-pass filtering from 0.5-45 Hz,
along with artefact removal via a Savitzky-Golay filter and
wavelet thresholding.

Signal analysis. Short-time Fourier transforms were gen-
erated for each channel across the 4 conditions, for each sub-
ject and trial. This was accomplished through spectrograms
on Matlab with the parameters set to a sampling frequency
of 128 Hz, a window length of 512, an overlap length of 500,
and an nFFT of 512.

To allow for further analysis, topographic maps were gen-
erated from 0-60 Hz in 10 Hz intervals for each subject, to
visualise the spatial distribution of each frequency band. This
was completed with EEGLAB GUI. An example set of heat
maps is shown in Fig. 1 for a subject undergoing an arith-
metic test and relaxation. There is a clear drop in intensity
at around 45 Hz across the stress and relaxed conditions.
The stress signal appears to show "bursts" of gamma activity
as opposed to the continuous gamma activity shown in the
relaxed data above 45 Hz.

Across the 40 subjects and the 4 test conditions, the most
active area of brain activity is in the frontal area of the brain.
This is observed at 10 Hz intervals from 0 to 60 Hz, reflecting
this area’s importance in the activity of frequency bands
corresponding to mental states (alpha, beta and gamma).
Therefore in future analysis, it is noted that electrodes in
this area (Fz, Fp1, F7, F3, F4, F8 and Fp2) are of heightened
relevance. Moreover, a similar pattern is observed in all test
conditions when power spectral density is plotted against
frequency. This reflects the initial spectrogram observations
of a shift at around 45 Hz in intensity.
Lastly, for further analysis, we extracted statistical fea-

tures from selected subjects to determine where there are
perceivable differences between stress samples. These fea-
tures include mean, variance, skewness, and kurtosis.

Samples Selection. As the data was recorded with 32 elec-
trodes, it was important to identify the relevant electrodes for
stress detection. We analysed the channels to determine this
and to ensure the most appropriate channels were selected if
necessary. Furthermore, the dataset’s subject rating system
raises a possible conflict between manual and automated
classification. An arithmetic sample can be rated 1 with an-
other arithmetic sample rated 10 while still corresponding
to the same class. With the ratings on the opposite ends of
the rating spectrum, this implies that a class may have con-
flicting representations. For our purpose of stress detection,
this would confuse the classifier, as samples that may not be
quantifiable as stress would be included in a stress class.

2.2 Fine-tuning Stress
Algorithm Architecture. Neuro-GPT leverages both an
EEG encoder and a GPT model. The learning algorithm can
be used without either feature, allowing for multiple types
of fine-tuning strategies. We will leverage two strategies
outlined in Neuro-GPT: "Encoder+GPT" and "Encoder-Only".
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Figure 1: Power spectral density over frequency plots, accompanied by topographic brain maps at intervals of
frequency every 10 Hz. This data is from Subject 1 trial 1, arithmetic (A) and relaxed (B).

The former uses the complete Neuro-GPT model with the
latter using the model after the GPT architecture is removed.

Briefly, fixed-length chunks of EEG data are passed through
an EEG encoder, which extracts "spatiotemporal features"
and creates learning embeddings. These learning embed-
dings make use of a "casual masking" technique, masking
tokens in a sequence. These sequences are fed into the GPT
model, where the model "learns to predict" the masked to-
kens. The reconstruction loss is then computed using the
original and the predicted token.

Data Preparation. We configured the Neuro-GPT release
with their pre-trained model for it to be fine-tuned on the
SAM dataset. Originally, Neuro-GPT used the BCI Competi-
tion IV Motor Imagery dataset [13] for fine-tuning, which
required its own adjustments to be compatible with the pre-
trained model. The data preparation in our fine-tuning had
to match their configuration as closely as possible to produce
more reliable results.
The raw SAM 40 EEG data arrays were extracted and

processed. This included up-sampling the data to 250 Hz, ap-
plying a bandpass filter at 0.5 Hz and 100 Hz, and applying a
notch filter at 50 Hz to eliminate the mains hum. SAM 40 was
recorded with 32 electrodes, compared to the 22 electrodes
used for both TUH and BCI. Out of these 32 electrodes, only
16 were a match with the Neuro-GPT electrodes. This re-
sulted in 6 missing electrodes. Our samples were reduced to
the 16 matching channels with an added selection of 6 chan-
nels. Finally, as NeuroGPT is configured to accept zipped
numpy arrays as input, we exported the samples in the same
format.
The SAM 40 dataset consisted of three "stress" activity

classes: "Arithmetic", "Mirror", and "Stroop" with each stress
event trial given a stress rating from 1-10. We leveraged this
system to produce a more consistent two-class stress system:
"Low-stress" and "High-stress". A threshold of 6 is applied
to the stress ratings, with all samples below a rating of 6,
alongside all relax samples, being classed as low-stress. All
samples with a rating of 6 and above are classed as high-
stress. From our analysis of this dataset, it was observed

that there was confusion between classes and stress at differ-
ent ratings. Therefore, we deemed the binary classification
system appropriate for our use case.
Sample Handling. Originally, Neuro-GPT attempts to

handle samples that consist of multiple trials that are hard-
coded in their trial extraction system. As our samples consist
of only one 25-second sample, the trial handling processes
were adjusted to handle each sample as its own individual
trial. Due to misalignment between the Neuro-GPT datasets,
a 22x22 matrix multiplication is required to line up their
electrodes. This aspect of the fine-tuning was adjusted to be
compatible with our 16 matching electrodes. The remaining
electrode spots were filled up by the next set of electrodes
in the SAM-40 dataset.

Fine-Tuning. Prior to fine-tuning the model with our new
data, the Neuro-GPT findings were replicated to ensure con-
sistency and reliability. We then proceeded to fine-tune the
pre-trained model with our new data. The number of classes
was reduced from the original 4 to 2, with 0 representing
"Low stress" and 1 representing "High stress". We fine-tuned
Neuro-GPT with both "Encoder+GPT" and "Encoder-only"
strategies. Other training parameters, such as batch size,
were kept to the original defaults provided by Neuro-GPT.
For "Encoder+GPT", the number of chunks was increased to
12 for one set of results and 1 for another. The chunk length
of 2 remained for "Encoder-only" due to model compatibility.
The chunk size was kept at 500. Neuro-GPT uses cross-fold
validation. Our new data was split into 9 folds. Each fine-
tuning method was conducted nine times, once for each fold.
This produced three sets of nine results and models.

Comparison with traditional models.We implemented
the state-of-the-arm algorithmswith our low-stress and high-
stress classes to provide more established comparisons to our
LLM fine-tuning. With three comparison methods (2D-CNN,
SVM, and XGBoost), we produce three further binary classi-
fiers. Unlike the fine-tuned model that uses raw EEG signals
as the input, we have to conduct additional pre-processing
steps, i.e., extracting Mel spectrograms, for our comparison
classifiers to work.
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Figure 2: Neuro-GPT EEG encoder and GPT mask pre-
diction pipeline.

3 STRESS QUANTIFICATION RESULTS
WITH NEURO-GPT

3.1 Evaluation Metrics.
In this study, we use the last evaluation accuracy as the
accuracy for a given fold. We collect the accuracy from all
nine folds in each method and compute the average accuracy
for a given method. The highest fold accuracy and lowest
fold accuracy are also taken to provide a best and worst
scenario from our fine-tuning.

3.2 Classification Results.
The initial replication with "Encoder+GPT" and "Encoder-
only" using the pre-trained model met the provided results
from Neuro-GPT, falling within their accuracy ranges. Our
binary classification method produced an average accuracy
of 71.3% when fine-tuned with both the encoder and GPT.
The best fold saw an accuracy of 86.8% and 62.3% on the
worst fold. An accuracy of 74.4% was produced when fine-
tuned with only the encoder, featuring an accuracy of 96.2%
on the best and 67.9% on the worst fold.

Both methods show reliable classification of the low-stress
and high-stress separated samples. However, evaluation losses
increase after some time. The learning curves produced
demonstrate that the model may benefit from more samples
in the dataset, specifically more distinctly class-separated
samples.
As seen in table 1, the "Encoder-only" method produces

better results than its GPT-included counterpart, with better
average, best, and worst folds. "Encoder+GPT"’s best fold of
86.8% accuracy was outperformed by its counterpart with
an accuracy of 96.2%. This may be due to a lower number
of chunks, as when one chunk of used, "Encoder+GPT" pro-
duced an accuracy of 92.5% on the same fold. While this
may be true, our results follow the same trend as Neuro-
GPT’s fine-tuning where the "Encoder-Only" strategy out-
performed the rest.

Table 1: Fine-tuned Neuro-GPT’s performance

Method Avg Min [fold] Max [fold]
Encoder-only 0.744 0.679 [8] 0.962 [7]
Encoder+GPT (12 chunks) 0.713 0.623 [6] 0.868 [7]
Encoder+GPT (1 chunk) 0.738 0.623 [8] 0.925 [7]

3.3 Comparison with Traditional Machine
Learning Methods.

We conducted the experiments to compare the classification
performance of our fine-tuned Neuro-GPT with three tra-
ditional machine learning algorithms, 2D-CNN, SVM, and
XGBoost. For the traditional models to work, we extracted
theMel spectrograms from the raw EEG signals and use them
as the inputs. The 2D-CNN model achieved an overall accu-
racy of 85% while SVM and XGBoost showed similar overall
accuracy at 86% and 93%, respectively. The best fold accu-
racies of our fine-tuned model resemble reliable classifiers
and are able to outperform the SVM and 2D-CNN classifiers.
However, the three algorithms yield better accuracy more
consistently than the fine-tuned GPT model. It is important
to note that the traditional methods were trained specifically
on the target dataset and require Mel spectrograms to work
while the Neuro-GPT only fine-tunes from a generic founda-
tion model and only requires raw EEG data. Thus, it gives
us some insights that the foundation model approach can
present a more scalable solution with relatively comparable
performance to traditional methods. The further inclusion of
domain knowledge through hand-engineered features could
potentially enhance the robustness of the fine-tuned founda-
tion model.

4 DISCUSSION
SAM-40 Dataset Observations. It was observed that the
SAM 40 dataset lacked distinction between the task samples
and the relax samples when analysed via Mel spectrograms.
This was seen across the key electrodes. This determines
that Mel spectrograms may not be suitable for stress detec-
tion with this dataset due to its setup and methodology. A
self-reported stress rating system can be too subjective, as
different people experience stress differently resulting in
what can be considered inconsistent ratings, as shown in
Fig. 3. For example, a person may provide a stress level of 7,
while another person better prepared for stress may provide
a lower rating while experiencing the same amount of stress.
We observed that the largest range (of low stress to high

stress) ratings in a given patient were 7. Through the statis-
tical feature extraction, perceivable differences are noticed
in the subject’s variance. However, as this is in the maxi-
mum range, other subjects may produce less variation in this
feature as their self-reported level ranges are lower.
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Figure 3: A comparison between a self-rated stress level
7 (high-stress) sample and a stress level 1 (low-stress)
sample in the SAM-40 dataset.

Furthermore, the tasks and relax samples were not pro-
duced in isolation, and this may produce conflicts and con-
fusion between the samples. It is stated in SAM 40 that a
subject’s next trial would start after their stress rating for
the prior trial was given. The last task of a trial would be an
arithmetic task, with the start of a trial being a relaxed event.
On average, arithmetic is the most stressful task based on
all subject’s self-reporting. This raises an open question on
whether relaxed samples in following trials are affected by
being conducted after the most stressful activity.
Lastly, the mismatch in electrodes between Neuro-GPT

and SAM 40 may have harmed the results. With only 16
similar electrodes, SAM 40’s setup may not be completely
compatible with Neuro-GPT. With complete channel com-
patibility, it can be argued that there may be an increase in
the model’s performance. To resolve this, Neuro-GPT can be
rebuilt to target the electrode configuration used in SAM 40.
Nevertheless, based on the evaluation results featuring the
adapted 16+6 channel system, fine-tuning can be considered
a step in the right direction.

5 RELATED WORK
Stress Quantification with Physiological Sensors. Phys-
iological biosensors are enhancing stress monitoring in clin-
ical and personal health contexts by providing real-time
feedback [14]. Despite progress, challenges persist. Hou et al.
[15] developed an EEG-based stress recognition algorithm

with promising accuracy but calls for larger datasets. Sam-
son and Koh [16] note improvements with wearable sensors
like CortiWatch and SKINTRONICS for real-time cortisol
detection while emphasizing the need for better integration.
Kocielnik et al. [17] introduced a combined sensor wristband
and questionnaire framework, effectively linking stress data
to activities and behaviour. Yoon, Sim and Cho [18] presented
a flexible stress monitoring patch, with enhanced sensitivity
and a lifespan of 9 days. Jovanov et al. [19] detailed the WISE
system, which uses HRV for long-term stress monitoring.
Recent advancements in wearable biosensors have led

to significant improvements, including enhanced machine
learning for EEG and sleep apnea analysis, novel systems for
joint health and cardiovascular monitoring [20], and flexible
bio-chips that address noise and accuracy issues in EMG,
ECG, PPG, and EEG [21]. Emerging stress-monitoring tech-
nologies now integrate sensors in smartwatches and contact
lenses for non-invasive tracking of indicators like heart rate
and cortisol levels [22], while multi-modal systems combine
PPG, EEG, eye-gaze, body motion capture, and GSR sen-
sors for precise real-time data synchronization [23]. While
the previous works implement traditional machine learn-
ing methods, we explore an alternative direction and utilise
the Neuro-GPT foundation model to enhance EEG-based
stress detection, exploring challenges and limitations with
fine-tuning on a 40-subject dataset.
LLMs in Neuroscience Applications. Large Language

Models (LLMs) have demonstrated remarkable potential in
neuroscience. GPT-2 has been used [24] to generate synthetic
EEG and EMG signals, effectively augmenting real datasets
and improving classification accuracy, with Random Forest
accuracy and real-time gesture recognition increasing by
over 20%. Neuroformer [25], a generative transformer model,
excels in predicting neuronal circuit activity and inferring
neural connectivity, significantly outperforming traditional
models like GLMs, and showing effective multimodal inte-
gration. Additionally, GPT-3.5 and GPT-4 have improved the
automation of computational neuroscience literature cura-
tion for the ModelDB repository, achieving high accuracy
in identifying relevant papers and enhancing metadata ex-
traction [26]. Event Stream GPT (ESGPT) extends GPTs to
continuous-time sequences of complex events such as elec-
tronic health record data, demonstrating significant perfor-
mance improvements over existing tools like TemporAI and
highlighting its potential to enhance research efficiency in
non-NLP domains [27]. We follow this trend and attempt to
identify a scalable approach to stress quantisation by lever-
aging an LLM foundation model.

5
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6 CONCLUSION
In this paper, we presented solutions to stress focused EEG
collection and detection through frontal electrodes and vari-
ous machine learning methods. We focused on fine-tuning
an LLM foundation model with an open dataset, configur-
ing our own modified binary class system. Through this, we
made positive steps towards a reliable EEG-based stress clas-
sifier, with an average accuracy of 74.4%. Within the study,
we outline several challenges and limitations that were en-
countered. The produced results and methods can lay the
foundations for future work, which may involve larger com-
patible datasets and more optimised classes and features.
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