
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 1

Real-time Anomaly Detection for Industrial Robotic
Arms using Edge Computing

Hakan Kayan, Ryan Heartfield, Omer Rana, Pete Burnap, and Charith Perera

Abstract—The integration of Internet of Things (IoT) devices in
industrial applications has become viable due to advancements
in ubiquitous computing that enable complex machine learn-
ing (ML) tasks on resource-constrained devices. Unlike prior
approaches that rely on built-in sensors, our system utilizes
externally gathered Inertial Measurement Units (IMU) data for
anomaly detection. In this paper, we show that simple 1D-CNN
and LSTM models on an ultra-low-power device (Nicla Sense
ME) optimized for edge-based industrial anomaly detection can
achieve approximately 98% accuracy and F1 score in detecting
movement-based anomalies (e.g., collisions and joint velocity
deviations) in industrial robotic arms. We analyzed an advanced
manufacturing scenario where the robotic arm performs three
consecutive, distinct tasks (pick-and-place, painting, and screw-
driving) and demonstrated that the proposed anomaly detection
system is task-independent. We implemented these models on-
device by designing a minimal model architecture and modifying
source code to minimize RAM usage and Bluetooth Low Energy
(BLE) overhead. Additionally, we examined the challenges of
deploying ML models in resource-constrained environments by
analyzing various quantization methods and the impact of hy-
perparameter choices on inference time, accuracy, and memory
consumption. Our approach focuses on detecting anomalies
directly at the data source which enables true real-time detection
with a complete edge computing framework that achieves a 10Hz
data frequency and a 250ms inference time when BLE is active.
Furthermore, we generated a comprehensive dataset capturing
quaternion and IMU data from an industrial robotic arm over
26 hours, including various anomaly scenarios, and made the
source code available on GitHub for replicability.

Index Terms—anomaly detection, industrial robotic arms, edge
computing, cyber-physical systems, real-time monitoring

I. INTRODUCTION

UBIQUITOUS computing enhances our lives by integrat-
ing seamless technologies into our daily activities while

remaining mostly invisible. A heterogeneous set of devices
is utilized to create context-aware applications that provide
a more efficient, convenient, and personalized experience for
end-users. Thanks to their high mobility, interconnectivity,
and adaptability, ubiquitous applications are present in var-
ious domains, including smart homes and cities, wearables,
entertainment, and manufacturing systems [1]. In industrial
domains, ubiquitous computing is primarily researched under
the paradigms of the industrial internet of things (IIoT),
industrial wireless sensor networks (IWSN), and industrial
cyber-physical systems (ICPS),
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With the arrival of Industry 4.0 [2], industrial systems
have become increasingly interconnected. Early systems were
air-gapped due to security concerns, but current systems
have adopted internet integration, leading to the widespread
adoption of IIoT devices. This transformation has optimized
resource use through intelligent automation, high-resolution
production, smart human-machine interaction, and predictive
maintenance [3]. However, this increased connectivity has
expanded the attack surface, making systems more vulnerable
to adversarial attacks. Recent cyber-physical incidents demon-
strate that these attacks often target data integrity to cause sig-
nificant physical disruptions [4]. Therefore, anomaly detection
methods that consider physical parameters are desired. Current
information security systems, focused on protecting enterprise
IT systems, often fail when operational technologies (OT) are
involved [5].

Physical anomalies in manufacturing and other industrial
systems, such as electrical grids, water, and gas plants, can
lead to disasters in critical infrastructures (CIs) with time-
sensitive applications. Therefore, real-time anomaly detection,
which minimizes the time between an anomalous physical
event and its detection, is important but often overlooked in
existing physics-based cyber-physical detection methods [6].
These methods generally fall into two categories based on
their detection methodology: statistical and data-driven [7].
They can also be classified by their localization approach,
distinguishing them as either centralized or decentralized.
Statistical solutions face scalability challenges as they rely on
predefined assumptions about data distribution, making them
less flexible and harder to scale with increasing data complex-
ity and volume while centralized ones suffer from detection
delays due to the time required to transmit data to a central
server and back. Consequently, there is a growing interest in
decentralized data-driven anomaly detection approaches [8],
which offer improved scalability and lower detection latency.

Edge computing improves the effectiveness of decentral-
ized data-driven approaches by processing data closest to
the source of where it is generated. Naturally, this reduces
latency, improves real-time response, and mitigates the bur-
den on centralized systems [9]. By utilizing ultra-low-power
edge devices directly at the data source, which are often
power and resource-constrained, we can implement efficient
ML models that perform anomaly detection in near real-
time. Direct integration at the edge reduces communication
latency, enhances privacy and security, and provides a practical
solution for monitoring industrial systems [10]. Embedded ML
frameworks such as TensorFlow Lite Micro (TFLite Micro)
[11] facilitate the deployment of neural networks, including
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1D and 2D convolutional neural networks (CNNs) and Long
Short-Term Memory (LSTM) networks, on these edge devices,
though they have constraints on the available layers due to the
low-computing power of edge devices.

In our previous work [12], we developed a system that used
externally gathered IMU data from an industrial robotic arm
to detect movement-based anomalies. In this paper, we extend
that work by presenting an IoT-based anomaly detection
system that identifies contextual anomalies in time series data
within a manufacturing testbed. Unlike traditional methods
that rely on built-in sensors, our system uses external IMU data
to detect anomalies. We evaluate the system in an advanced
manufacturing scenario where the robotic arm consecutively
performs three distinct tasks, screwdriving, painting, and pick-
and-place, to demonstrate task-independent anomaly detection.
Furthermore, we deploy our ML models as TinyML solutions
on a resource-constrained, ultra-low-power edge device, and
we analyze different quantization methods and hyperparameter
settings to assess their impact on model accuracy, inference
time, and memory usage. Finally, this work provides a fully
automated pipeline using open-source tools for ML-based
anomaly detection on industrial robotic arms. This enables
non-intrusive, real-time monitoring. We also address the chal-
lenges of running ML algorithms directly on ultra-low-power
devices and present a real-world dataset with corresponding
experimental results.

• We introduce a novel end-to-end edge anomaly detection
framework that can operate independently of cloud infras-
tructure which enables real-time detection with minimal
latency where cloud dependency is only required to
update the model running on the edge. This system is op-
timized for deployment on an ultra-low-power industrial
edge device (Nicla Sense ME) and contributes insights
into practical trade-offs in accuracy, energy efficiency,
and inference speed. The source code is available on
GitHub1.

• We generate a comprehensive dataset capturing quater-
nion and IMU data from an industrial robotic arm over
26 hours, including anomalies such as: (I) hitting the arm,
(II) hitting the platform, (III) attaching an extra weight,
(IV) generating a magnetic field, and (V) earthquake
simulation.

• We conduct an extensive performance analysis of ML
models (LSTM and 1D-CNN) on edge and cloud plat-
forms, utilizing techniques like root mean square error
(RMSE) for loss metrics and various quantization meth-
ods to assess model size, accuracy, and latency, hence
focusing on the feasibility of deploying these models in
edge environments.

• We analyze the operational boundaries and performance
capabilities of an industry leading edge development
board, evaluating the performance trade-offs of neural
network model architectures and hyperparameters for
state-of-the-art algorithms (1D-CNN, LSTM) on key edge
device resource metrics such as RAM, flash memory and

1https://github.com/hkayann/Real-time-Anomaly-Detection-in-Industrial-
Robotic-Arms-via-TinyML

energy consumption to optimize model efficiency and
performance that also balances practical deployment in
resource-constrained environments.

The proposed system operates under specific conditions
that support reliable anomaly detection in an industrial set-
ting. To keep the evaluation focused on the effectiveness
of the method rather than external disruptions, we define
key operational constraints. These constraints cover hardware
stability, environmental factors, task consistency, and reliable
communication between system components. Based on these
points, we make the following assumptions:

• System and Environmental Stability: The integrity
of the edge board and the entire system is protected,
with a stable power supply and controlled environmental
conditions which does not affect the integrity of the
generated IMU data.

• Predictable Task Execution and Data Quality: The
robotic arm performs repetitive tasks with inherent pat-
terns, and the externally gathered sensor data is assumed
to be calibrated and reliable.

• Robust and Secure Communication: BLE connectivity
is maintained without drops due to close proximity to the
Fog Node (PiHMI) and the data sampling rate being fixed
to 10Hz, and data transmission is secure and reliable. The
cloud node is always active with stable connection as it
is required for the initial development and updating the
model when necessary.

II. RELATED WORK

A. Industrial Robotic Arms

In recent years, a significant amount of research has focused
on anomaly detection in industrial robotic arms using various
modeling and machine learning approaches. One study [13]
employed autoencoders (AE) to analyze sound data from
internal sensors, effectively identifying abnormal statuses de-
spite limitations in sound frequency response and reliance
on normal status data for training. Another approach used
Support Vector Machines (SVMs) to detect trajectory devi-
ations in repetitive robotic tasks, demonstrating high accuracy
but limited to predefined trajectories and requiring precise
boundary settings [14]. Additionally, backscatter signals have
been utilized to ensure movement accuracy by monitoring
signal propagation signatures, though this method requires
precise placement and calibration of tags and is susceptible
to environmental interference [15]. One-class SVMs have
also been used for cognitive analytics-based machine health
monitoring and predictive maintenance, providing real-time
insights but struggling with complex anomaly detection due
to the lack of labeled data [16]. Collision detection has
been achieved through analyzing joint torque data with feed-
forward neural networks, showing high accuracy but limited
to collision-specific anomalies and reliant on sensor data accu-
racy [17]. Gradient boosting techniques have been applied for
failure detection, requiring extensive training data and being
computationally intensive [18]. Our approach also utilizes
ML but differs by focusing on externally gathered IMU data
which enables real-time on-device anomaly detection using
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neural networks such as 1D-CNN and LSTM, while improving
adaptability across different operational conditions.

At the time of writing, the aforementioned work of [14]
may be considered the closest to our research. The authors
explore a scenario where a Yaskawa Motoman MH5 in-
dustrial robotic arm performs a repetitive task, following a
predetermined trajectory. They introduce slight deviations to
the path to generate anomalies and utilize SVMs and One-
class SVMs for detection. Similarly, our work focuses on
detecting movement-based anomalies where the arm is subject
to a range of different physical disturbances. However, unlike
prior studies that focus on a single-task robotic operation
with predefined motion patterns, our work extends to task-
independent anomaly detection, evaluating the system across
multiple distinct manufacturing tasks. Furthermore, we provide
a fully integrated edge-based ML pipeline designed for real-
time anomaly detection, focusing on deployment feasibility
on ultra-low-power embedded devices. To the best of our
knowledge, we are one of the first to thoroughly investigate
the feasibility of a real-time edge anomaly detection system
utilizing externally gathered IMU data for predictive mainte-
nance in industrial robotic arms, supporting early identification
of contextual anomalies across diverse operational tasks. The
main motivation behind these kind of works where external
sensors are utilized is the questionable integrity of the built-in
data as we previously discussed in the introduction.

B. Industrial Anomaly Detection on Edge
Industrial settings require continuous, real-time detection,

requiring decentralized, low-latency, low-power systems due
to their 24/7 operation and the growing heterogeneity of
environments. While raw inference speed is important, the
choice of edge computing over cloud-based inference should
also consider factors like network reliability, which can be
inconsistent in industrial environments, leading to potential
interruptions in cloud-based processing [19]. Edge computing
also enhances privacy and security by processing sensitive data
locally, reducing exposure to potential breaches during trans-
mission [20]. Additionally, the ability to operate efficiently in
low-power conditions is vital for systems that must function
autonomously for extended periods, making edge solutions
not only practical but essential in many industrial applications
[21]. While cloud offloading is well-studied [22], applying it
to industrial anomaly detection with ultra-low-power edge/IoT
devices is relatively new. Recent advancements now enable
ML algorithms, such as neural networks, to run efficiently on
ultra-low-power edge/IoT devices. However, existing studies
on edge-based industrial anomaly detection often rely on
single-task operations [23], [14] or cloud-dependent anomaly
detection [24], [25], limiting real-time feasibility. Our work
addresses this gap by implementing a fully edge-deployed
TinyML system which enables real-time anomaly detection
directly on an ultra-low-power device across multiple robotic
tasks where cloud dependency is only required if the model
to be updated over-the-air (OTA). Some literature defines
edge anomaly detection as using nodes that gather data from
multiple sensors [26], often with Single Board Computers
(SBCs) like Raspberry Pi as edge nodes [27].

TABLE I: Example Embedded ML Applications

Reference Model Open-source Application

[41] kNN ✓ Cane Gesture Recognition
[37] NN ✓ Speech Enhancement
[35] NN X Vital Sign Monitoring
[34] TEDA X Road Hole Detection
[33] NN X USB Fan Tilting Detection
[38] NN X Hand Gesture Recognition
[39] RF X Vehicle Identification
[36] NN X Face Mask Detection
[40] NN X Drone Navigation
[32] NN ✓ Anomalous Sound Detection
[42] NN X Object Detection
[43] TEDA X Vehicle Emission Monitoring
[31] IF X Submersible pump
This Work NN ✓ Anomalous Movement Detection

TEDA: Typicality and Eccentricity Data Analytics, RF: Random Forest,
IF: Isolation Forest, NN: Neural Networks, kNN: k-Nearest Neighbors.

Embedded ML applications vary widely due to the avail-
ability of numerous sensor types and actuators. Their attributes
of low latency, enhanced security, and privacy, coupled with
minimal bandwidth requirements, make them ideal for scalable
and real-time applications [28]. Edge development boards with
Arm Cortex processors are particularly favored in industrial
settings [29] as they also contain various types of built-in
sensors. These devices support a range of applications, leading
to the development of Embedded ML-as-a-service [30]. Exam-
ples of Embedded ML applications include anomaly detection
in submersible pumps [31], recognition of anomalous sounds
[10], [32], detection of fan tilting [33], identification of road
anomalies [34], monitoring of vital signs for Covid-19 treat-
ment [35], verification of face mask use [36], speech enhance-
ment for hearing aid users [37], hand gesture recognition [38],
vehicle identification [39], drone navigation assistance [40],
cane gesture recognition [41], fruit detection [42], and vehicle
emission monitoring [43]. Despite the widespread adoption of
TinyML in various fields, its application in industrial robotic
arms for real-time movement-based anomaly detection remains
largely unexplored. Our work contributes by deploying op-
timized 1D-CNN and LSTM models directly on an ultra-
low-power edge device demonstrating the feasibility of task-
independent anomaly detection in an industrial setting. Neural
networks are popular in Embedded ML applications due to
their adaptability, flexibility, and efficient optimization tech-
niques. Table I compares recent Embedded ML applications.
TFLite Micro, developed by Google and now open-source, is
the most common framework used in these applications [44]
which is also utilized in this work.

C. Neural Network Models for Edge Anomaly Detection

Neural network-based models have proven highly effective
for time-series anomaly detection [12]. For regression-based
anomaly detection, 1D-CNNs and LSTMs are preferred [45],
while 2D-CNNs have proven superior when classifying image
data due to their ability to extract spatial features [46]. 1D-
CNNs effectively recognize temporal patterns in sequence
data, such as time series or speech [47]. LSTMs, though
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computationally more complex, consistently outperform other
models in these contexts [48]. This complexity makes 1D-
CNNs more favored for Embedded ML applications due
to their lower computational requirements. Recent research
on 1D-CNNs includes intelligent fault diagnosis of bearings
[49], human activity recognition [50], emotion recognition via
speech analysis [51], and anomaly detection in industrial water
treatment systems [52].

Contrasting with CNNs, Recurrent Neural Networks
(RNNs) are distinguished by their inherent memory, enabling
them to process sequential data with a temporal context.
Among RNN architectures, LSTM units and Gated Recurrent
Units (GRU) are more popular. LSTMs, along with their
variants, have been shown to consistently outperform other
models in tasks involving sequential data [53], [48], thanks to
their ability to capture long-term dependencies. However, the
computational complexity of LSTM-based models is generally
higher than that of CNNs, including 1D-CNNs [54], which
may affect their suitability for certain real-time or resource-
constrained applications. In this work, we design lightweight
1D-CNN and LSTM models, tuning hyperparameters to min-
imize model size for deployment on an ultra-low-power edge
device (Nicla Sense ME) with only 64KB RAM, much of
which is used for BLE connectivity. We apply these models
to detect movement-based anomalies across multiple robotic
tasks and evaluate their performance in an edge computing
environment.

D. Edge-to-Cloud ML Systems for Industrial Applications

ML pipelines automate the process from data collection to
inference, essential for maintaining model performance over
time. Data is typically collected at the edge, with model
training and deployment occurring on centralized or cloud
platforms due to high computational requirements. However,
popular ML pipelines like TensorFlow Extended [55] and
Kubeflow [56] often fall short for Embedded ML models.
Existing commercial solutions, such as Edge Impulse [57]
and NanoEdge AI Studio [58], are limited by reduced cus-
tomization and specific hardware dependencies. In contrast,
our work introduces a novel, fully open-source edge-to-cloud
ML pipeline that bridges these gaps. Training is conducted
on a cloud-based workstation, and inference is performed on
ultra-low-power edge devices which enables real-time anomaly
detection in industrial settings while emphasizing low latency,
power efficiency, and adaptability in resource-constrained en-
vironments, supporting continuous model updates and real-
time monitoring.

III. SYSTEM OVERVIEW

A. The Use Case & Industrial Robotic Arm

TABLE II: Joint Parameters

Task Joint Velocity (◦/s) Joint Acceleration (◦/s2)
Screwdriving 80 100
Painting 120 100
Pick-and-place 80 80

We implement a scenario using a cobot, UR3e by Universal
Robots2. This cobot emulates three distinct tasks performed
non-anomalously for 24 hours consecutively: screwdriving,
painting, and pick-and-place. In total, there are 23 poses; 21 of
these poses are unique, with the arm repeating one pose twice
during the pick-and-place task. The arm initiates from a home
position, returning there after completing each task to remain
idle for 5 seconds. It is attached with a 2FG7 OnRobot Parallel
Gripper3 and mounted on a custom-made steel platform.
Figure 2 showcases a sample pose from each task along with
an image of the teach pendant, the built-in human-machine
interface (HMI), used to configure the movements. UR3e
provides three movement types: moveJ, moveL, and moveP.
During the experiment, moveJ is employed, determining the
movement per pose, joint velocity, and joint acceleration as
shown in Table II. This ensures all joints start and finish their
motion at the same time. The moveL and moveP movement
types, which focus on straight path movements and circular
blends, are not employed in our use case scenario. These
movement types are more suited to traditional applications
and do not fully capture the complex multitasking capabilities
required in smart factory scenarios, where robotic arms need
to perform multiple tasks with varied movements. Figure 1
demonstrates the movement types.

Fig. 1: The movement types (from left to right, moveL, moveP,
and moveJ) offered by the UR3e software. Any movement that
does not strictly follow a linear or circular path requires the
use of the moveJ command. In this use case scenario, the
tasks are designed according to advanced scenarios, thus we
implement the moveJ option.

B. Quaternions and IMU Data

Quaternions represent rotations in three-dimensional space
using a four-dimensional vector, offering a robust solution for
orientation representation compared to Euler angles, which
can suffer from gimbal lock [59]. IMU data can include
up to nine features, such as accelerometer, gyroscope, and
magnetometer axes, while quaternions use just four features
(q = w + xi+ yj + zk), enhancing computational efficiency.
This is particularly beneficial in edge-based neural networks,
where reduced dimensions lower computational demands and
improve real-time performance. Quaternions effectively cap-
ture anomalies related to orientational deviations, while IMU
data detects linear motion anomalies through the accelerome-
ter, angular velocity through the gyroscope, and magnetic field
disruptions with the magnetometer. Our previous work [60]

2https://www.universal-robots.com/products/ur3-robot/
3https://onrobot.com/en/products/2fg7
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(a) Screwdriving pose. (b) Painting pose.

(c) Pick-and-place pose. (d) Teach pendant.

Fig. 2: There are 23 example poses associated with tasks
such as screwdriving (10 poses), painting (7 poses), and pick-
and-place (6 poses). Each pose is manually configured using
the teach pendant, a standard built-in HMI accompanying
Universal Robot industrial robotic arms.

demonstrated that the Nicla Sense ME (4) provides the most
consistent quaternion and IMU data among tested devices.

C. Edge Anomaly Detection Framework

To achieve true real-time anomaly detection, detecting
anomalies directly at the data source is required. There are two
key parameters to consider: (I) The delay in detection increases
with the distance from the data source due to communication
latency, and (II) the inference time depends on the available
computing power. Low computing power results in higher
inference time. While inference time in the cloud can be
measured in nanoseconds, on the edge (data source), it can
be seconds. This is a critical factor in determining the highest
available frequency for data generation, as inference time
slower than data generation leads to incremental delay, making
real-time detection impossible.

We developed an anomaly detection framework that inte-
grates edge, fog, and cloud nodes to ensure real-time anomaly
detection. The cloud node, a secured data science workstation
equipped with an NVIDIA RTX A6000 GPU, offers high
computational power with a power consumption of 300W
and a cost of approximately £8000. This node handles model
training, generation, and updates. Once trained, models are
transmitted to the fog node, a cost-effective Raspberry Pi 4B
(6.4W, £80), located on-site to maintain reliable BLE commu-
nication with the edge node. The fog node supervises the edge
node, displays anomaly statuses, and performs OTA updates.
The edge node is mounted directly on an industrial robotic arm
and offers ultra-low power consumption (0.55mW) and low
cost (£69), making it ideal for real-time processing of IMU
data (accelerometer, gyroscope, and magnetometer readings).

4We will refer to this as ”edge” or ”Nicla” from now on.
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Fig. 3: The anomaly detection framework.

Anomalies are identified by comparing the prediction residuals
against a pre-determined threshold; if the residuals exceed
this threshold, the corresponding sample window is classified
as anomalous. This setup ensures low-latency detection and
immediate response, with the fog node providing detailed task
and anomaly status indicators as the edge node is limited with
possible LED use as an indicator. Figure 3 demonstrates the
complete anomaly detection framework.

D. Anomaly Detection Model & Methodology

We conduct regression on nine input features from the
accelerometer, gyroscope, and magnetometer, each providing
three-axis information. Anomalies are detected by comparing
the residuals of predictions against a preset threshold de-
termined through grid search. Using the root mean square
error (RMSE) as our loss metric helps mitigate the effects
of point anomalies or noise. This approach enhances real-
time detection capabilities by leveraging machine learning
models on edge IoT devices, ensuring low-latency responses
essential for industrial applications. This work extends our
prior research [61] by introducing new anomaly types and
assessing performance directly on the edge device, addressing
practical limitations and emphasizing the benefits of real-time
detection for industrial robotic arms.

We chose TensorFlow for its open-source nature and
its TFlite Micro sub-framework, designed by Google for
resource-limited edge devices, particularly ARM-based CPUs.
This framework supports key TensorFlow operations like
convolutional, dense, pooling layers, and activation functions
but lacks native support for 1D layers. To address this, we
simulate 1D layers using 2D counterparts by adding an extra
dimension to the 1D input data, applying 2D convolutional and
max pooling layers with adjusted kernel and pooling sizes to
mimic 1D operations. After processing, data is reshaped back
to 1D for further analysis. Our LSTM model implementation
directly stacks two LSTM layers followed by a dense layer,
optimizing network architectures through grid search. This
setup allows us to implement efficient ML models on edge
devices, ensuring real-time anomaly detection essential for
industrial applications.

The conversion from TensorFlow to TensorFlow Lite Micro
(TinyML) is performed using the TensorFlow Lite converter.
This process applies graph optimizations such as constant
folding, pruning of unused operations, and removal of training-
specific layers (e.g., dropout layer). The model is then con-
verted into a compact FlatBuffer format optimized for em-
bedded systems. These optimizations reduce model size while
maintaining full precision and accuracy, as confirmed by our
findings when no additional compression methods, such as
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pruning or quantization, were applied. Since TinyML operates
on resource-constrained edge devices, this conversion provides
efficient inference without requiring specialized hardware ac-
celeration. As depicted in Fig. 5 and explained in this section,
the converted model runs directly on an ultra-low-power edge
device (Nicla Sense ME) which enables real-time anomaly
detection with minimal computational overhead.

The 1D-CNN model, shown in Figure 4, utilizes nine
features (x, y, z axes of IMU data). To prevent overfitting
due to input periodicity, we implemented various mitigation
measures, stopping training if there is no loss improvement
over five epochs. Data is split into 60% training, 20% val-
idation, and 20% test sets, with hyperparameters optimized
via grid search. RMSE is the selected loss metric. The model
includes two 1D convolutional layers followed by a max
pooling layer. During both training and anomaly detection,
a sliding window approach is applied. If the overall RMSE of
a window exceeds a pre-determined threshold, the window is
classified as anomalous. Anomaly detection data is excluded
from the training phase.

E. System Setup & Data Circulation

Edge devices. We utilize the Nicla Sense ME edge devel-
opment board, developed by Bosch, featuring a 64 MHz Arm
Cortex M4 microcontroller. The board includes BHI260AP
(accelerometer and gyroscope) and BMM150 (magnetome-
ter) IMU sensors, enabling the generation of 9 degrees-of-
freedom (9DOF) IMU data. Quaternion data are generated via
the Mahony [62] algorithm. The edge board supports BLE
connectivity for wireless data transfer but lacks a WiFi chip.
It is powered via a Raspberry Pi 4B (fog device) over USB 3.0
and is capable of running ML models while being strategically
positioned on a bridge between the upper (wrist 1, 2, and 3)
and lower (base, shoulder, and elbow) joints of the robotic arm
using a breadboard attached with clamps.

Fog device. The fog device employed in our setup is a
Raspberry Pi 4B running DietPi OS, a lightweight version
of the Raspberry Pi OS designed for energy efficiency. It is
powered by a network switch connected to the nearest power
socket, offering Power over Ethernet (PoE) capability. This
setup simplifies power distribution by eliminating the need for
individual power supplies for each fog device. The Raspberry
Pi 4B has sufficient capacity to simultaneously power multiple
edge devices (four via USB: two 3.0 and two 2.0). The
positioning of the fog device ensures that its movements are
not disturbed by the USB cable powering the edge. In our
system, the fog device serves as a Human-Machine Interface
(HMI) and is referred to as PiHMI. The screen on the PiHMI is
used for real-time monitoring, playing a key role in indicating
anomalies, as demonstrated in previous incidents [4].

Cloud device. The cloud device in our setup is a data science
workstation equipped with an NVIDIA RTX A6000 GPU.
This high-performance GPU enables efficient and fast model
training, making it suitable for handling resource-intensive
tasks such as training neural network models. The cloud
device accomplishes five major tasks: (I) training the machine
learning models, (II) determining if an update of the ML

TABLE III: Device Tech Specs Comparison

Nicla Sense Me Raspberry Pi 4B Cloud

GPU N/A N/A NVIDIA RTX A6000
CPU Arm® Cortex M4 Quad core Cortex-A72 Intel(R) Xeon(R)
RAM 64KB 4GB 128GB
Storage 2MB 32GB 2TB
Connectivity Bluetooth 4.2 WiFi 802.11b/g/n - Bluetooth 5.0 Ethernet

model is required, (III) monitoring and tracking the active
manufacturing task, (IV) initiating the process of updating
the machine learning model, and (V) storing the data on a
cloud server to mimic data historians seen in legacy industrial
systems. The workstation is located in a restricted-access
room and is accessible only via VPN connection to ensure
data security and privacy. Figure 5 demonstrates the utilized
devices, their locations, and the way they are powered. Table
III compares the technical specs of each asset.

Automated data flow and utilized software tools. The
proposed system operates autonomously without the need for
further human intervention after the initial model deployment.
USB 3.0 provides ample power output of 1.5 Amperes, suffi-
cient for most edge devices, negating the need for additional
power sources. Using batteries would offer greater flexibility
and portability for edge devices but would require a custom
case. We use a PoE HAT to power both the screen and the
Pi from a single source. The model is initially trained in the
cloud, converted into a TFlite file, then into a C++ file, and
transmitted over WiFi to the fog device. The Python script on
PiHMI sends IMU data and anomaly status to the cloud, while
data in InfluxDB is visualized via a Grafana dashboard. The
cloud-based Python script initiates new model training when
anomalous windows fall below a specific threshold. Model
update decisions depend on the severity of anomalies over a
set timeline.

Edge data are securely transmitted over BLE using encryp-
tion to ensure data confidentiality. Node-RED is utilized on
PiHMI to facilitate streamlined control, while Grafana is used
for monitoring, with data fetched from the InfluxDB time
series database. This setup enables real-time visualization and
analysis of edge data. Python scripts run on both the cloud
device and PiHMI to transfer the required data. Cloud data
are logged and stored in Google Drive, serving as an essential
repository for data analytics and historical analysis. This
approach resembles the concept of data historians commonly
employed in industrial systems to maintain comprehensive
records and enable in-depth insights into system performance
and behavior. The model deployment and system architecture
are presented in Figure 5.

F. IoT Monitoring System

We introduce a method for real-time monitoring in industrial
settings, focusing on environments with industrial robotic
arms. Our system utilizes an IoT device to gather IMU data
from the arm, which is then wirelessly transmitted to a local
fog device (PiHMI) for task classification and supervision.
This data transmission is facilitated over BLE, with the edge
using an nRF52832 microcontroller for BLE 4.2 connectivity.
For the development of our real-time monitoring system, we
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Fig. 4: Architecture of the utilized 1D-CNN model and anomaly detection methodology. The 1D-CNN processes IMU data,
uses grid search for hyperparameter optimization, and detects anomalies with RMSE as the loss metric.
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Fig. 5: End-to-end system architecture with power management, model training and deployment, and data visualization setup.

employed Node-RED, an open-source flow-based program-
ming tool, and developed a Node-RED package5 to facilitate
the reception of data from the edge device at the fog layer
allowing continuous monitoring of IMU data. We have chosen
InfluxDB for data storage, similar to ICPS data historians.
Grafana extracts IMU data from InfluxDB and displays it in
real-time on the PiHMI screen, with value mapping handling
type conversion. We also modified the Node.js package to
include an additional anomaly status. Figure 6 demonstrates
the fog screen during arm operations.

IV. ANOMALY GENERATION

In this paper, we focus on anomalies that generate physi-
cal consequences representing potential data integrity threats
like cyber-physical attacks or degradation-induced faults. An
essential physical characteristic of industrial robotic arms is
their trajectory, as even minor deviations can lead to severe
consequences. We also introduce an invisible movement-based
anomaly involving unexpected magnetic fields due to their
potential impacts and imperceptibility, rendering continuous
on-site monitoring inefficient. We implement five distinct

5https://www.npmjs.com/package/node-red-contrib-ble-sense

Fig. 6: Demonstrates the screen of the fog node.

anomalies in a controlled setting to safeguard all involved
assets. While the earthquake simulation is ongoing, the other
anomalies occur once during each task. Each anomaly scenario
is documented in its respective CSV file.

The introduced anomalies include an earthquake simula-
tion, where the platform is periodically shaken to emulate
earthquake effects. Another anomaly involves hitting the arm,
where the edge board positioned between the elbow and wrist
1 joints is directly impacted on the elbow with a gentle slap to
generate a collision anomaly. Additionally, hitting the platform
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directly generates another anomaly. Adding extra weight is
simulated by the gripper holding a custom-made object filled
with ball bearings, adding a total weight of 4kg. Lastly, an
unexpected magnetic field is generated by moving a magnet
past the edge board.

Figure 7 demonstrates each anomaly case. For example, the
Y-axis of the accelerometer shows noise-like consequences for
the earthquake simulation, distinct peaks for hitting the arm
and platform, a noise-filtering effect for the extra weight, and
a prominent flipping effect for the magnetic field anomaly.
Among these, only the earthquake simulation persists through-
out the entire test, whereas the others are generated on a per-
task basis.

V. EVALUATION

A. Quaternion and IMU Data Comparison

The edge board offers two modalities for IMU data acqui-
sition: calibrated and uncalibrated/raw. It captures sequential
tasks of screwdriving, painting, and pick-and-place, executed
with the home position marking the transition. During these
transitions, edge produces either calibrated IMU data or Ma-
hony quaternion data. We executed this sequence over 24 hours
for both data types. Our observations, as shown in Figure
8, indicate that Mahony quaternions exhibit inconsistencies,
such as drift and oscillatory patterns, which are absent in the
calibrated IMU data that displays periodicity. Additionally,
externally generated quaternions differ from those produced
by the edge. Despite verifying the correctness of our code and
setup, we could not identify the reason for the lack of periodic
behavior in the quaternion data. However, this investigation
falls outside the scope of our work. Our primary focus is
to evaluate the readiness and suitability of the data types for
industrial robotic arm-related anomaly detection applications.
This evaluation led us to favor calibrated IMU data over
Mahony quaternion data due to its ability to detect linear
motion-related anomalies.

The generated quaternions (Figure 8a) exhibit oscillatory
behavior, specifically in the qY component, accompanied
by drift. This behavior must be removed to create efficient
sample windows for our ML models, but the removal process
introduces computational overhead, and there is no guarantee
that the resulting sample windows will exhibit the desired
characteristics such as periodicity. Conversely, the IMU data
(Figure 8b) clearly shows periodicity, which is crucial as
we define our input size for the ML algorithms based on
periodicity, which is also affected by generated anomalies.

B. Correlation Analysis

The intrinsic characteristics of IMU attributes result in
interrelations among them. The high degree of correlation
among IMU features can pose multiple challenges: (I) an
elevated risk of overfitting due to redundant information, (II)
diminished interpretability, and (III) increased computational
complexity. The performance of the same ML model can
vary when applied to correlated versus non-correlated IMU
data, potentially leading to misinterpretations. Therefore, we
examine the extent of correlation in the IMU data used. Figure

9 presents a heatmap demonstrating the correlations among
calibrated IMU data, with the values representing the Pearson
correlation coefficient. Given that the highest coefficient is just
above 0.7, we do not employ dimensionality reduction, as our
evaluation indicates a moderate level of correlation, allowing
us to retain the essential information within the data without
concern for excessive redundancy or overfitting.

C. Data Frequency Analysis

The sampling rate is a critical factor in real-time anomaly
detection systems as it sets an upper threshold for data
frequency, enabling more detailed analysis but also increasing
computational complexity. Edge development board manu-
facturers preset key parameters like sampling rate, offset,
range, and resolution to ensure stability. This precaution is
necessary because components in close proximity, such as a
temperature sensor positioned near the CPU, may generate
elevated values. Edge utilizes two different IMU sensors
(BHI260AP for accelerometer and gyroscope, and BMM150
for magnetometer). An unexpected case is revealed during
the data frequency test. When the sampling rate is increased
beyond 10Hz, regardless of the extent of the increase (e.g.,
20Hz or 100Hz), the frequency eventually drops back to 10Hz.
Experiments conducted exclusively with quaternion data or
9-DoF IMU data sampled at a rate of 10Hz exhibited no
occurrence of a frequency drop. Therefore, we utilize the
dataset with a 10Hz frequency for the remainder of the work.
All data transmission is performed over BLE.

D. Task Classification

In the proposed scenario, the same industrial robotic arm
performs three consecutive tasks. The first step in the classifi-
cation process is accurate window sampling. The arm returns
to its home position and stays idle for 5 seconds after com-
pleting each task. Feature visualization (see Figure 8b) reveals
that the Z-axis of the gyroscope exhibits a distinctive pattern
with minimal noise interference, with data points revolving
around zero when the arm is idle. We sample windows by
evenly distributing the idle points, with each window starting
and ending with approximately 2.5 seconds of idle data,
corresponding to 25 data points at a collection rate of 10
Hz. We verify the sampling integrity by comparing the mean
of each sample window per task. There are a total of 4422
sample windows, equally distributed among the tasks (1474
samples per task). The sample analysis (see Table IV) shows
that painting is the longest process, followed by screwdriving
and pick-and-place, while idle points between tasks range
from 48 to 73. This variation is primarily due to the near-
zero initialization of the painting task. In some samples, the
near-zero values are considered idle because the magnitude of
actual values is less than the noise. Figure 10 demonstrates
each task.

The goal is to classify tasks in real-time, enabling immediate
identification of the current task when an anomaly is detected.
We compare two computationally efficient rule-based heuristic
methods: peak detection using parabolic interpolation and
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Fig. 7: Anomalies and their generation mechanisms, showing examples of non-anomalous and anomalous samples.

qW qX qY qZ

(a) Mahony quaternions generated by Nicla.
AccX (m/s2) GyroX (dps) MagX ( T)

AccY (m/s2) GyroY (dps) MagY ( T)

AccZ (m/s2) GyroZ (dps) MagZ ( T)

(b) Calibrated IMU generated by Nicla.

Fig. 8: Comparison of IMU data acquisition modes: Mahony
quaternions (a) and calibrated IMU data (b).
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Fig. 9: The correlation heatmap of IMU data. The highest cor-
related feature pairs are AccX −AccY , and AccX −MagX .
The map confirms that the features do not highly correlate as
nearly all Pearson coefficients are between 0.7 and -0.7.

Fig. 10: Example sample windows per task. Data correspond
to a Z-axis of gyroscope.

TABLE IV: Sample Analysis

Metric / Task Screwdriving Painting Pick-and-place Idle Points

Maximum Length / Mean 205 / 0.08238 214 / 0.58915 192 / 0.12051 73 / –
Minimum Length / Mean 191 / -0.25615 207 / -0.44017 179 / -0.04802 48 / –
Mean Length / Mean 197.94 / -0.04329 210 / 0.07074 184.62 / 0.02435 56.28 / –

Fig. 11: Comparison of classification methods.

deviation detection through first derivative thresholding. Ap-
plying a rolling mean filter enhances the performance of both
methods when utilizing rolling windows. The activation of
rolling windows is governed by a rule that identifies idle peri-
ods within the filtered gyroscope data on the Z-axis. These idle
periods are detected based on a specific threshold determined
by the magnitude of noise; setting a threshold lower than the
noise magnitude could lead to incorrect window sampling,
as the process may misinterpret noise as arm activity. By
accurately distinguishing between idle and active periods, we
create sample windows that are then evenly distributed among
the three tasks for further analysis. Peak detection relies on
the presence of peaks, whereas deviation detection depends
on idle points. We observe that the second method classifies
tasks earlier, as deviations are detected before peaks arise.

Figure 11 compares these methods. The deviation detection
method allows for quicker task classification, with screwdriv-
ing taking around 1.5 seconds, painting requiring approxi-
mately 2.5 seconds, and pick-and-place being identified in just
0.6 seconds. A moving average filter is applied to the data to
enhance the accuracy of detection.
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TABLE V: Evaluation of Common Thresholding for 1D-CNN

RMSE Window Size

Performance Metrics 45 50 100 150 200 265

F1-Score 0.675 0.644 0.807 0.912 0.924 0.946
Precision 0.98 0.993 0.971 0.979 1 1
Recall 0.514 0.477 0.691 0.853 0.859 0.898
Accuracy 0.867 0.859 0.912 0.956 0.962 0.973
FPR 0.003 0.001 0.007 0.006 0 0

E. Anomaly Detection

Our goal is to simulate real-world scenarios where anoma-
lies happen unexpectedly. To achieve this, we introduce
anomalies in each task without recording their timestamps.
This creates uncertainty about when an anomaly starts or
stops. Anomalies might span from one task to another, leading
to potential mislabeling with shorter window sampling. The
minimum window length guaranteed to be an anomalous
window is 265. This number matches the sum of the longest
sample and idle points. We also experiment with shorter
windows because using them allows quicker detection which
is essential for ICPS. The minimum RMSE window length
we test is 45 as it must exceed the number of idle points
to avoid windows filled solely with idle points while it also
matches the input window size. This prevents data from two
tasks mixing and ensures a task-independent anomaly system
since 45 matches the minimum number of idle points.

As mentioned earlier, we evaluated two neural network
models: 1D-CNN and LSTM, chosen for their confirmed
efficiency and compatibility with TensorFlow Lite Micro.
Our approach to anomaly detection involves regression, with
thresholding techniques employed to identify anomalies (see
Algorithm 1). Given the variety of anomaly types, we imple-
mented both common and pairwise thresholding methods, en-
abling an assessment of the detectability of different anomaly
types.

1) 1D-CNN: Table V demonstrates our results using com-
mon thresholding for anomaly detection with a 1D-CNN.
This approach employs a sliding window algorithm to label
sample windows, as shown in Figure 4. We observed improved
performance in the anomaly detection model as the sliding
window size increased, as when the window contained 265
points which is the minimum size required to reliably capture
an anomalous event. When selecting the sliding window size,
multiple considerations arise. Increasing the window size
decreases the sensitivity of the model to noise and enhances
its ability to detect extended anomalies, as demonstrated by
our continuous earthquake simulation. However, there is an
trade-off to consider: extended windows might overlook brief
anomalies due to their minimal influence on the overall RMSE.
Our evaluation suggests that smaller windows result in a higher
number of false positives, indicating that a larger window size
is preferable for improving detection accuracy in our use case.

Table VI presents the outcomes of implementing threshold-
ing in pairs, involving a non-anomalous set paired with one
of the anomalous sets. The results are promising, especially
for the earthquake and magnetic field cases, even with smaller
window sizes. The continuous behavior of the earthquake sim-

Algorithm 1 Sliding Window-based Anomaly Detection
Require: • Test data X ∈ Rn×9

• Mean µtraining ∈ R1×9

• Std. dev. σtraining ∈ R1×9

• Threshold list T ∈ Rk

• Window size W ∈ {45, 50, 100, 150, 200, 265}
Ensure: A label list P ∈ {0, 1} |S| for each threshold in T , where S is the

rolling-sum array of RMSE values
(A) Generate RMSE array R with first window:

1: X̂ ←
X − µtraining

σtraining
▷ Normalize data

2: R← [] ▷ Will store RMSE for each step
3: for i← 1 to n−W do
4: Wwin ← X̂[ i : i+W − 1, : ] ∈ RW×9

5: ŷ ← fML(Wwin) ∈ R1×9 ▷ Model predicts next point
6: y ← ŷ · σtraining + µtraining ▷ Inverse-normalize

7: ri ←
√

1
9

∑9
j=1

(
yi,jtarget − yi,j

)2
▷ RMSE for time step i

8: R.append(ri)
9: end for

(B) Apply second window to R: Rolling sum array S:
10: S ← []
11: for i←W to |R| do

12: Si ←
i∑

j=i−W+1

Rj

13: S.append(Si)
14: end for ▷ |S| = |R| −W + 1

(C) Thresholding to produce anomaly labels:
15: for t ∈ T do
16: P ← [] ▷ List of anomaly labels for threshold t
17: for i← 1 to |S| do
18: if Si > t then
19: P.append(1) ▷ Anomaly
20: else
21: P.append(0) ▷ Normal
22: end if
23: end for
24: (Evaluate P for threshold t)
25: end for

ulation and the deviations seen in Figure 7 when a magnet is
near a magnetometer demonstrate the role of the magnetometer
in orientation and detecting unexpected magnetic fields. On
the other hand, the anomaly detection in the extra weight
scenario is less effective, as added weight tends to dampen
arm vibrations, resembling the effect of a smoothing filter,
and thus poses a greater challenge for detection. The scenario
of hitting a platform shows lower effectiveness in anomaly
detection, due to the absence of direct impact on the arm.
Despite these variations, accuracy remains high (no less than
92%) in most scenarios. Next, we explore the performance of
the LSTM model.

2) LSTM: The same methodology used for the 1D-CNN,
containing window size and thresholding techniques, was
applied to the LSTM model, with results detailed in Table
VII. Our analysis indicates that LSTM consistently surpasses
1D-CNN across all RMSE window sizes, especially at smaller
window dimensions. Additionally, LSTM approaches near-
perfect accuracy with an RMSE window size of approximately
200. Table VIII further confirms the superior performance of
LSTM over 1D-CNN through pairwise thresholding analysis.
Next, we will focus on the edge implementations of both
algorithms.
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TABLE VI: Evaluation of Pairwise Thresholding for 1D-CNN

Anomaly Type Window Size F1-Score Precision Recall Accuracy FPR

Hitting Arm

45 0.646 0.836 0.526 0.963 0.006
50 0.651 0.854 0.526 0.964 0.006
100 0.736 0.912 0.617 0.972 0.003
150 0.884 0.938 0.836 0.986 0.003
200 0.984 0.987 0.98 0.998 0.0008
265 0.978 0.996 0.96 0.997 0.0002

Hitting Platform

45 0.548 0.57 0.528 0.931 0.0337
50 0.552 0.577 0.528 0.932 0.0329
100 0.641 0.701 0.591 0.948 0.021
150 0.851 0.865 0.836 0.977 0.0109
200 0.974 0.982 0.966 0.996 0.0014
265 0.965 0.981 0.95 0.994 0.0014

Earthquake Simulation

45 0.745 0.767 0.725 0.969 0.014
50 0.764 0.789 0.74 0.972 0.0127
100 0.913 0.903 0.924 0.989 0.0063
150 0.99 0.986 0.994 0.998 0.00089
200 1 1 1 1 0
265 1 1 1 1 0

Extra Weight

45 0.418 0.39 0.45 0.927 0.043
50 0.413 0.376 0.459 0.924 0.046
100 0.493 0.426 0.584 0.93 0.048
150 0.735 0.753 0.718 0.97 0.014
200 0.914 0.93 0.9 0.99 0.0041
265 0.926 0.948 0.905 0.991 0.002

Magnetic Field

45 0.999 1 0.998 0.999 0
50 0.999 1 0.999 0.999 0
100 1 1 1 1 0
150 1 1 1 1 0
200 1 1 1 1 0
265 1 1 1 1 0

TABLE VII: Evaluation of Common Thresholding for LSTM

RMSE Window Size

Performance Metrics 45 50 100 150 200 265

F1-Score 0.897 0.911 0.926 0.980 0.999 0.999
Precision 0.996 0.991 0.999 0.973 1.0 0.999
Recall 0.815 0.843 0.863 0.986 0.998 1.0
Accuracy 0.949 0.956 0.963 0.989 0.999 0.999
FPR 0.0009 0.0026 0 0.0096 0 0.0003

TABLE VIII: Evaluation of Pairwise Thresholding for LSTM

Anomaly Type Window Size F1-Score Precision Recall Accuracy FPR

Hitting Arm

45 0.748 0.941 0.621 0.973 0.0026
50 0.768 0.935 0.651 0.975 0.0030

100 0.866 0.970 0.782 0.984 0.0016
150 0.941 0.995 0.893 0.993 0.0002
200 0.999 1 0.998 0.999 0
265 1 1 1 1 0

Hitting Platform

45 0.865 0.951 0.793 0.980 0.0034
50 0.877 0.952 0.814 0.982 0.0034

100 0.920 0.967 0.878 0.988 0.0024
150 0.996 0.996 0.997 0.999 0.0003
200 1 1 1 1 0
265 1 1 1 1 0

Earthquake Simulation

45 0.991 0.991 0.991 0.998 0.0005
50 0.994 0.994 0.994 0.999 0.0003
100 1 1 1 1 0
150 1 1 1 1 0
200 1 1 1 1 0
265 1 1 1 1 0

Extra Weight

45 0.826 0.957 0.726 0.982 0.0019
50 0.830 0.972 0.724 0.982 0.0012

100 0.874 0.961 0.801 0.986 0.0019
150 0.998 0.999 0.997 0.999 0
200 1 1 1 1 0
265 1 1 1 1 0

Magnetic Field

45 0.995 1 0.991 0.999 0
50 0.996 1 0.992 0.999 0

100 0.998 1 0.997 0.999 0
150 1 1 1 1 0
200 1 1 1 1 0
265 1 1 1 1 0

F. Edge Deployment and Evaluation

One of the significant engineering contributions of this study
is developing a TFLite Micro port for the edge, which utilizes
an ARM-based CPU. To the best of our knowledge, Nicla lacks
official support from TFLite Micro, as it has not undergone
testing, nor is a pre-existing port available, according to
TensorFlow documentation. We are among the first to evaluate
its compatibility with TFLite Micro, beyond commercial off-
the-shelf products, and provide a functional, verified port. The
porting process required adjustments in the libraries used to
eliminate conflicts. Hence, the offered seamless functionality
is guaranteed only with the specific library versions employed
in our project. Future updates to these libraries may require
further changes to the port.

The primary limitation for edge computing in our setup is
the RAM, restricted to 64KB. There are two main components
consuming RAM: (I) TFLite Micro operations, which allocate
specific RAM space through the tensor arena parameter,
and (II) the functionalities necessary for OTA updates. Our
investigation revealed that enabling OTA updates requires
initializing Nicla with BLE activated, as shown below:

1 while(!BHY2.begin(NICLA_BLE));

Listing 1: Memory Error

Activating BLE for its intended use in controlling the Nicla,
such as for sensor initialization/configuration or displaying
sensor data on a web server, led to conflicts. To resolve these
issues and achieve additional RAM savings, we modified the
source code. Subsequent testing to evaluate RAM availability
after loading essential libraries revealed an increase in total
available space for necessary operations to 10,128 bytes,
compared to 9,088 bytes with the unmodified code. To
enhance RAM efficiency further, we implemented a sliding
window approach with iterative RMSE calculation, conserving
more RAM. This strategy is important, as our analysis (see
Table V) indicates that larger window sizes improve anomaly
detection accuracy. The iterative RMSE calculation method
helps minimize the impact of RMSE window size on memory.

We determined that the maximum allocatable memory for
the tensor arena is 7,012 bytes, a significant increase from
5,260 bytes in the unaltered version. This conclusion came
from tests involving different memory allocations within the
arena for the required operations/libraries. However, accurately
forecasting the memory needs is complex and requires actual
implementation. Therefore, we examined the impact of model
parameters on the tensor arena size required. Table IX displays
the results of our model size evaluation, with key metrics
defined as follows: Input represents the number of time
steps inputted into the model; Output specifies the model
output length; Shift refers to the number of steps advanced
to prevent re-predicting any time step during inference. The
dimensions of Filter and Pooling correspond to the lengths of
one-dimensional filters. Compatibility shows cases where the
model size surpasses the available RAM.

TensorFlow Lite is designed for mobile devices and single-
board computers such as the Raspberry Pi, whereas TFLite
Micro is aimed at edge development boards equipped with 32-
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TABLE IX: The Effect of Hyperparameters on Model Size

Model Input Output Shift Number of filters Filter Size Pooling Size Model Size (bytes) Compability Tensor Arena (bytes)

1D-CNN 45 1 1 8 3 3 8772 ✓ 5760
1D-CNN 45 1 1 8 5 3 9668 ✓ 5568
1D-CNN 45 1 1 16 3 3 15844 ✓ 6952
1D-CNN 45 1 1 32 3 3 34404 X 12584
1D-CNN 45 1 1 8 3 2 10884 ✓ 5768
1D-CNN 45 5 5 8 3 3 24004 ✓ 5768
1D-CNN 45 10 10 8 3 3 42904 ✓ 5768
1D-CNN 45 45 45 8 3 3 175204 X 5768
1D-CNN 40 1 1 8 3 3 8596 ✓ 5256
1D-CNN 30 1 1 8 3 3 7444 ✓ 4264
LSTM 45 1 1 8 N/A N/A 9608 ✓ 5976
LSTM 45 1 1 16 N/A N/A 20648 X 8920
LSTM 45 1 1 32 N/A N/A 61160 X 15184
LSTM 45 45 45 8 N/A N/A 8876 ✓ 6976

bit microcontrollers. Contrary to our initial belief that models
with greater computing power and storage would surpass
their lighter counterparts, we found that, without quantization,
performance is comparable between TFLite and TFLite Micro
models, and their sizes remain the same. This observation
is important, indicating that under specific conditions, where
storage and inference time are within acceptable thresholds,
TFLite Micro models can be just as effective. However, due to
RAM constraints on the edge, we explored quantization. In the
absence of quantization, model weights and biases are stored
as 32-bit floating-point numbers, each consuming 4 bytes of
memory. While the ARM Cortex-M4 processor in the Nicla
technically supports 32-bit floating-point operations, practical
RAM limitations may render this impractical.

G. Quantization
TensorFlow Lite introduces three post-training quantization

techniques, each impacting model size and performance dis-
tinctively:

• Dynamic Range Quantization: In this method, weights
are converted from floating points to integers during
model conversion, while activations are dynamically
quantized to 8 bits at runtime. Computations utilize 8-
bit integers, with outputs in 32-bit floating-point format.

• Full Integer Quantization: This technique offers the
most significant reduction in model size by converting
all model elements, including weights, biases, activations,
and inputs, to 8-bit integers. It is anticipated to slightly
reduce detection accuracy.

• Float16 Quantization: It halves model size by converting
32-bit floating-point parameters to 16-bit floating points,
with a lesser expected impact on performance compared
to full integer quantization.

Table X compares the sizes of models using different quan-
tization methods with those of the main and non-quantized
TFLite models. To evaluate the effect of quantization on
model performance, we calculated the MSE for an anomaly
scenario (hitting arm). Our findings suggest that dynamic range
quantization, which does not decrease model size, may not be
beneficial for smaller 1D-CNN models. The Float16 quanti-
zation technique reduces the model size by 2220 bytes and

maintains performance nearly equivalent to the unquantized
model. In contrast, full integer quantization, saving 3308 bytes,
results in a higher MSE, indicating a possible decrease in
model accuracy.

TABLE X: Model Size Comparison

Model Post-training Quantization Method Size (bytes) MSE
TensorFlow N/A 51,607 N/A
TFLite - 1 No Quantization 11692 ≈ 0
TFLite - 2 Dynamic Range 11696 ≈ 0
TFLite - 3 Float16 9472 4.182× 10−7

TFLite - 4 Full Integer 8384 1.169

MSE: Mean Squared Error.

We evaluated the effectiveness of the Float16 and full
integer quantization methods, comparing them with the main
model. Applying the same evaluation methodology across
all models, Table XI presents our results, showing that the
performance of the main model and the non-quantized TFLite
model is equivalent. This indicates that in situations where
the TFLite model size meets the required constraints, its
performance can match that of the main model. However,
this does not extend to all cases, particularly when a smaller
model size is necessary due to RAM limitations. The fully
integer-quantized model exhibits the lowest accuracy, failing
to classify anomalies effectively. The low precision and high
false positive rate (FPR) across different RMSE window sizes
point to a frequent occurrence of false positives, rendering it
unsuitable for industrial use. The Float16 quantization method
provides results almost identical to the main model, showing
its viability for applications requiring both efficiency and
accuracy.

With Float16 quantization emerging as the preferred solu-
tion, we wanted to implement the model but faced another
challenge. At the time of writing this work, the dequantize
operation in TFLite Micro only accepts 8-bit signed integer,
16-bit signed integer, or 8-bit unsigned integer types as inputs,
not aligning with 16-bit binary floating-point input, leading
to compatibility issues. We used the Netron application [63]
to examine the compatibility of the model and its structure.
Faced with quantization barriers, we investigated RAM con-
servation alternatives, finding that modifying certain BLE-
related buffers via firmware recompilation could free up about
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TABLE XI: Performance Comparison of TFLite Models

RMSE Window Size

Model Performance Metrics 45 50 100 150 200 265

Main Model

F1-Score 0.675 0.644 0.807 0.912 0.924 0.946
Precision 0.98 0.993 0.971 0.979 1 1

Recall 0.514 0.477 0.691 0.853 0.859 0.898
Accuracy 0.867 0.859 0.912 0.956 0.962 0.973

FPR 0.003 0.001 0.007 0.006 0 0

No Quantization

F1-Score 0.675 0.644 0.807 0.912 0.924 0.946
Precision 0.98 0.993 0.971 0.979 1 1

Recall 0.514 0.477 0.691 0.853 0.859 0.898
Accuracy 0.867 0.859 0.912 0.956 0.962 0.973

FPR 0.003 0.001 0.007 0.006 0 0

Full Integer

F1-Score 0.422 0.422 0.421 0.440 0.437 0.419
Precision 0.276 0.267 0.269 0.351 0.312 0.275

Recall 0.891 1.0 0.975 0.591 0.732 0.877
Accuracy 0.347 0.267 0.287 0.600 0.501 0.357

FPR 0.851 1.0 0.963 0.395 0.582 0.829

Float16

F1-Score 0.675 0.645 0.809 0.913 0.924 0.945
Precision 0.984 0.993 0.970 0.978 1 1

Recall 0.514 0.477 0.694 0.856 0.859 0.897
Accuracy 0.867 0.859 0.912 0.956 0.962 0.972

FPR 0.003 0.0011 0.0076 0.0066 0 0

3KB of RAM, as detailed in our GitHub repository. Because
our edge device has only 64KB of RAM, even the modest
memory savings from quantization were insufficient, and full
integer quantization resulted in unacceptable accuracy losses.
Due to compatibility challenges with quantized models, we
concentrated on evaluating the non-quantized model for its
compatibility with TFLite Micro, confirming all essential
layers were supported. The absence of quantization removed
the need for a dequantize step. Furthermore, given the lack
of native support for 1D-CNN layers, we adapted by using
2D-CNN layers instead. To evaluate the performance, we
employed two strategies. Initially, we conducted tests using
the provided scripts. Then, data was transmitted via serial to
perform inference via the TFLite Micro model and capture its
outputs/predictions. Our results demonstrate that by dropping
quantization and implementing firmware-level optimizations,
the anomaly detection performance remains consistent with
that of the main model. Hence, this should be considered as a
primary task as it also prevents any sacrifice on the anomaly
detection performance.

H. Power Usage & Detection Latency
Finally, we evaluated the inference time and power usage.

Our observations showed that both the 1D-CNN and LSTM
models have a similar power consumption of approximately
12.8 mA during inference. The power consumption is mea-
sured via the digital USB power meter as shown in Figure
12. This implies that, in the absence of power usage opti-
mization and with a constant current draw, a device equipped
with a 10,000 mAh battery could function for 32.55 days
(781.25 hours). Concerning inference times, enabling BLE
significantly impacts them. For example, without BLE, the
inference duration for the 1D-CNN model is between 115 ms
and 116 ms, but with BLE enabled, it fluctuates from 125
ms to 250 ms. Similarly, for the LSTM model, inference
time without BLE spans 176 ms to 176.1 ms, increasing
to 180 ms to 250 ms with BLE active. Therefore, the 1D-
CNN model is faster. These inference durations indicate that
achieving real-time anomaly detection at 10Hz, as targeted for
the provided use case, is not viable due to potential delays.
The most practical frequency attainable, given the inference
times, is 3Hz.

Supplied Voltage

Drawn Current

Device Temperature

Fig. 12: Digital USB power meter used to measure power
consumption during model inference.

I. Generalizability

To show the generalizability of our work, we extended
our previous work [12] where we introduced a context-aware
anomaly detection system that used externally gathered IMU
data. We used a 1D-CNN model to detect movement-based
anomalies in robotic arms that perform repetitive pick-and-
place tasks as many robotic arms follow periodic patterns.
We found that deviations in joint velocities appear clearly
in externally attached IMU sensors. This periodicity makes
the anomaly detection approach from our previous work
applicable to similar industrial robotic arm scenarios.

In this paper, we further evaluate the generalizability of
our approach using another publicly available robotic dataset
[23]. This dataset provides joint velocity data categorized into
four distinct classes based on variations in payload (1.6,lb and
4.5,lb) and operational speed (full-speed and half-speed), as
illustrated in Fig.13. To adapt our previously developed 1D-
CNN model for this classification task, we modified only the
final dense layer and trained the network using a cross-entropy
loss function. Despite the subtle nature of the differences
introduced by varying payloads (see Fig. 13), our adapted
model successfully achieved 100% classification accuracy.
This outcome demonstrates that even a relatively simple
neural network model can effectively identify subtle changes
in robotic arm behavior caused by payload variations. The
achieved high accuracy, as reflected clearly by the confu-
sion matrix shown in Fig. 14, confirms that joint velocity-
based analysis is sufficient to detect operational variations.
Hence, our results reinforce the potential of deploying such
lightweight yet effective algorithms on resource-constrained
edge devices which enables real-time detection of deviations in
robotic arm performance across different operational payloads
and speeds.
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Fig. 13: Joint velocities when arm carries different payloads.
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Fig. 14: The loss graph and the confusion matrix of the
classification task.

VI. LESSONS LEARNED & LIMITATIONS

(1) Necessity of the presence of idle points. Task clas-
sification approaches based on rule-based heuristics depend
solely on the presence of consecutive idle points. The absence
of these points can lead to failures in task classification and
anomalies appearing post-idle points can cause misclassifica-
tion. While anomaly detection remains possible, associating
them with specific tasks becomes challenging. Noise further
complicates classification by introducing delays. A rolling
mean filter, sized based on noise duration, can mitigate this;
however, if noise persists beyond the number of idle points,
classification approaches fail.

(2) Drawbacks of Tensorflow Lite Micro. Edge devel-
opment boards are resource-constrained devices designed to
minimize power usage, resulting in limited support for cer-
tain operations in ML frameworks. Previous research (see
Section II) shows that TFLite Micro is a common choice
among embedded ML applications. This framework supports
essential neural network elements like dense networks, 2D-
CNNs, depthwise separable convolutions, and pooling layers.
To implement 1D-CNNs, we tweak the 2D-CNN layer since
one can simulate the other. Official tutorials for TFLite Micro
primarily focus on performance comparisons between TFLite
and TensorFlow models, lacking comprehensive guides for
specific edge development boards, such as the Nicla. This
requires customizing the framework for various use cases,
introducing numerous bugs that require intensive debugging,
especially when dealing with proprietary APIs. These issues
often stem from APIs designed by different teams without con-
sidering the applicability of embedded ML applications while
TFLite Micro is developed by an open-source community. In
this paper, we ported TFLite Micro to the Nicla, resulting in
numerous conflicts and a labor-intensive process. The provided
code is tailored to meet the unique requirements of the Nicla
edge development board.

(3) Drawbacks due to limited RAM. We investigated
the possibility of creating an edge-based anomaly detection
system. Determining feasibility is challenging, but we started
by trying to use existing solutions before making any changes.
A major challenge we faced was the limited RAM on the Nicla
board. Our tests showed that running even a simple 1D-CNN
model was difficult because a lot of RAM was needed for
the BLE functionality, which was essential for sending data to
the fog device. To manage this, we recompiled the main and
BLE stacks to fit both our model and BLE communication,

identifying some settings that could be tweaked to save more
RAM. These changes seemed not to affect functionality. A key
issue is predicting how changes to the source code might affect
the system, which is tricky without any guidance on buffer
sizes. Therefore, a full system implementation is required for
thorough testing. We found that limited RAM greatly impacts
the feasibility, requiring specialized knowledge in embedded
programming to overcome these limitations.

(4) Edge-to-fog-to-cloud. We have shown that it is feasible
to construct a fully operational automated pipeline using solely
open-source IoT tools. This approach not only enhances the
customization of the pipeline but also broadens the applica-
bility of our IoT-based anomaly detection system. A Node.js
BLE package was the main component we found lacking,
leading us to develop one that fits our specific needs. While
this package was initially designed for our work, its open-
source status means it can be easily modified to fit other boards
or systems with little effort. One key challenge in deploying
such edge anomaly detection systems is the limited means
for providing insights or feedback. Edge development boards
generally rely on LEDs for visual cues, which offer limited
information compared to what is available through cloud-based
tools. We addressed this limitation by developing a fog node
as a HMI to visualize anomaly status, IMU data, ongoing
tasks while enabling the adaptivity via OTA. However, the
task of simultaneously monitoring multiple edge assets poses
a challenge. The use of multiple fog nodes could provide
a solution; however, implementing this approach in a real
industrial setting is essential to evaluate its practical challenges
and establish its viability.

(5) Drawbacks of a sliding-window approach. Sliding win-
dow techniques facilitate real-time anomaly detection through
regression. In our examined use cases, a longer window consis-
tently improved anomaly detection, particularly for contextual
anomalies where context is time-bound, and anomalies occur
over time. Earthquake and unexpected magnetic field scenarios
provided better results with relatively shorter windows, while
the hitting arm scenario showed the poorest performance due
to the transient nature of the anomaly. Therefore, employing
a sliding window approach with a fixed window size poses
challenges for short-duration anomalies, as their impact on
overall threshold parameters (RMSE in our case) becomes
minimal. Considering a dynamic window size, as suggested
by [64], could address this issue. Evaluating this method on
industrial benchmark datasets would offer valuable insights.

(6) Limited scope due to attachment location of an edge
development board. The robotic arm comprises six distinct
joints, with each joint possessing individual mobility and
the capability to move independently. The lower three joints
of the arm are employed for executing larger, more robust
movements, while the upper three joints are dedicated to
carrying out finer, more precise motions. In order to ensure
the accuracy and reliability of data collection, we choose
to mount the edge development board onto the section of
the arm that connects the upper and lower joints. However,
this configuration presents challenges when the arm performs
movements that result in minimal displacement in that specific
part. A limitation is obvious during the initialization of a
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painting task. Certain data points appear as idle because the
movement is not clearly reflected on IMU data. Therefore,
the position for attaching the edge development board to the
industrial robotic arm needs predetermination based on the
movement of the arm. A task change might require moving
the board to a different joint or location.

(7) Consistency across TensorFlow frameworks. The
TensorFlow has two sub-frameworks: TensorFlow Lite, and
TFLite Micro. TensorFlow Lite is designed for mobile de-
vices and single-board computers like the Raspberry Pi while
TensorFlow Lite Micro targets edge development boards with
32-bit microcontrollers. Despite the expectation that the main
model, with its greater computing power and storage, would
outperform others, the loss values across all frameworks
remain closely matched. The difference in loss is negligible
in a way that it does not affect the accuracy. This is very
promising as it means under certain circumstances where
storage and inference time are between the acceptable limits
the lite models can perform pretty well.

(7) Observed oscillation and shift on quaternion data. The
built-in functions provided by Nicla (Bosch) developers are
used to generate quaternions. The quartering representation
displays a shifted oscillatory behavior. The idle position is
not identifiable. The periodicity is not observed. While there
might be several reasons for this (e.g., low sampling rate,
drift, measurement noise, computation lag) it is obvious the
use of quaternions to detect movement-based anomalies on
an industrial robotic arm requires several pre-processes that
introduce computational overhead to the edge development
board.

(8) Challenges in model update strategies. The current
implementation uses a placeholder threshold to trigger new
model training when anomalous windows fall below a set
value. This provides a starting point but does not fully address
the complexities of deciding the best timing for updates.
In security-critical applications, where conditions and threats
change over time, update decisions must be specific to the
domain. Factors such as operational constraints, anomaly
severity and frequency, and the changing nature of industrial
environments must be considered. More research is needed
to develop adaptive update strategies that can decide when
retraining is necessary. This will help maintain detection
accuracy and system reliability.

VII. CONCLUSION & FUTURE WORK

In this paper, we focused on the implementation of a low-
power, edge-based ML system for real-time anomaly detection
on industrial robotic arms, targeting disruptions in arm trajec-
tory and magnetic field deviations. Utilizing a compact edge
development board, we collected IMU data and performed
inference using 1D-CNN and LSTM models. This data was
then transmitted to a fog device for HMI visualization and
subsequently relayed to the cloud. An updated model was
sent back to the edge device via BLE, facilitated by a cus-
tomized fog node. Our approach demonstrates the feasibility of
building an automated anomaly detection pipeline on resource-
constrained edge devices, providing an alternative to commer-
cial ML-as-a-service solutions. This is achieved by utilizing

simple yet effective models, 1D-CNN and LSTM, that are
highly compatible across both cloud and edge environments.
As a result, we observed nearly identical anomaly detection
performance across TensorFlow, TFLite, and TFLite Micro
models when no quantization is applied. However, challenges
such as adapting TFLite Micro to various edge boards due
to potential firmware conflicts require extensive porting and
embedded coding efforts. Specifically, limitations in RAM
required source code modifications to decrease the size of pre-
allocated buffers. This adjustment was essential to implement
the LSTM model effectively, ensuring it could outperform
the 1D-CNN while maintaining reliable data transmission
over BLE. The entire process, utilizing open-source tools,
is documented in our GitHub repository. Future work will
focus on expanding compatibility to other ARM-based boards
with IMU sensors and integrating additional sensor types. We
also consider exploring online learning mechanisms to remove
the need for a cloud node after training. Developing adaptive
model update strategies to decide when retraining is necessary
could help maintain detection accuracy and system reliability.
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