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Smart-home systems represent the future of modern building infrastructure as they integrate numerous devices and applica-

tions to improve the overall quality of life. These systems establish connectivity among smart devices, leveraging network

technologies and algorithmic controls to monitor and manage physical environments. However, ensuring robust security in

smart homes, along with securing smart devices, presents a formidable challenge. A substantial number of security solutions

for smart homes rely on data-driven approaches (e.g., machine/deep learning) to identify and mitigate potential threats. These

approaches involve training models on extensive datasets, which distinguishes them from knowledge-driven methods. In

this review, we examine the role of knowledge within smart homes, focusing on understanding and reasoning regarding

various events and their utility towards securing smart homes. We propose a taxonomy to characterize the categorization

of decision-making approaches. By specifying the most common vulnerabilities, attacks, and threats, we can analyze and

assess the countermeasures against them. We also examine how smart homes have been evaluated in the reviewed literature.

Furthermore, we explore the challenges inherent in smart homes and investigate existing solutions that aim to overcome

these limitations. Finally, we examine the key gaps in smart-home-security research and deine future research directions for

knowledge-driven schemes.

CCS Concepts: · Human-centered computing → Ubiquitous and mobile computing; · Security and privacy →

Human and societal aspects of security and privacy; · Computing methodologies → Knowledge representation

and reasoning.

Additional Key Words and Phrases: Internet of Things, Reasoning, Cyber-Physical Security, Smart Home

1 Introduction

Cyber-physical systems (CPSs) combine hardware and software for speciic purposes. For example, actuators

that function in the external environment and receive information from sensors are controlled by embedded

computers and communication networks to be adaptable, autonomous, and eicient in smart spaces [70]. The

level of embeddedness of these devices ranges from pervasive to ubiquitous computing [73].

In pervasive systems [98], the main characteristics are efectiveness in smart homes, invisibility, localized

scalability, and the masking of uneven conditioning. Thus, the primary aim of pervasive computing is to seamlessly

connect devices and applications. It assumes that the environment is intelligent such that it can a way that can

detect any device that enters and exits from the environment and immediately provide information that users

need to the device.

Authors’ Contact Information: Azhar Alsufyani, School of Computer Science and Informatics, Cardif University, Cardif, United Kingdom

of Great Britain and Northern Ireland; e-mail: alsufyaniaa@cardif.ac.uk; Omar Rana, School of Computer Science & Informatics, Cardif

University, Cardif, United Kingdom; e-mail: ranaof@cardif.ac.uk; Charith Perera, Cardif University, Cardif, Cardif, United Kingdom of

Great Britain and Northern Ireland; e-mail: PereraC@cardif.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1557-7341/2024/10-ART

https://doi.org/10.1145/3698768

ACM Comput. Surv.

HTTPS://ORCID.ORG/0009-0007-7082-8769
HTTPS://ORCID.ORG/0000-0003-3597-2646
HTTPS://ORCID.ORG/0000-0002-0190-3346
https://orcid.org/0009-0007-7082-8769
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0002-0190-3346
https://doi.org/10.1145/3698768
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3698768&domain=pdf&date_stamp=2024-10-03


2 • A. Alsufyani et al.

A ubiquitous system [73], which builds on the notion of free mobility by taking advantage of pervasive

computing, can create dynamic models of multiple environments and apply its services accordingly. These

systems contribute to the artiicial intelligence (AI) ield with high lexibility and efectiveness characteristics,

and they have the ability to plan autonomously and intelligently [40].

CPSs enter various ields to perform functions such as security, safety, reliability, environmental monitoring,

optimized service performance, and cost minimization. The typical applications of CPS include ambient assisted

living, transportation, power grids, agriculture, industrial maintenance, healthcare, robotics, pollution control,

and communication technologies.

A smart home is a CPS application that plays a crucial role in human life from the perspectives of comfort,

safety, management, security, and privacy. Moreover, the ultimate goal of a smart home is to improve the quality

of life by developing all appliances in the house to become smart. Even though the concept of a smart home was

discussed more than two decades ago, this technology has not achieved its main objectives and obstacles to its

progress need to be investigated [19].

Between 2025 and 2030, the number of devices connected to the Internet of Things (IoT) will grow with

economic value in various areas from $6.3 trillion to $12.6 trillion [86]. The responsibility for bolstering security

has also increased as a result of extensive expansion. However, smart-home devices are prone to security threats

and vulnerabilities. Thus, developers experience diiculty in maintaining the security of smart-home systems.

1.1 Existing Surveys

Several recent surveys focused on reviewing CPSs and smart homes separately. To the best of our knowledge, no

reviews have been conducted on CPS in smart homes in terms of knowledge-based techniques. In this section,

we discuss the novelty of our study and compare it to other surveys. Table 1 summarize the surveyed papers.

Ref. [5] discussed future technologies for smart houses based on the IoT. This study also highlighted the

advantages of IoT-based smart-home devices in terms of quality, reliability, and security. In [90], the authors

provided an overview of the demand-response potential of smart buildings and discussed the mechanisms to

mitigate attacks at both the cyber and physical layers. Terence et al. [53] deined seven major requirements for

building smart homes using IoT. Ref. [121] analyzed and predicted the main technological and scientiic trends

in the development of smart homes over the next decades. A survey [28] focused on securing smart homes

by detecting abnormal home and user behavior in the homes and then responding to threats. Gong et al. [42]

discussed the architecture and framework of smart buildings in cyber-physical social systems (CPSSs). Moreover,

they proposed a CPSS-based smart-building operation framework. The framework proposed by Stojkoska and

Trivodaliev [106] aimed to close the gap between modern smart homes and future IoT-based smart homes. Ref.

[16] provided crucial insights into the privacy, security, and trust challenges associated with IoT devices in

home environments. In [8], vulnerabilities in smart applications, the potential threats they pose, and the current

state-of-the-art security mechanisms available to address these issues are presented.

The proliferation of communication between the cyber and physical worlds is a major challenge because

a large amount of data are produced [25]. Tavcar and Horvath [106] reviewed data collection and analysis in

real-time to support data-driven decision making. As presented in [46], existing solutions to protect the physical,

communication, processing, and storage components of cyber systems, such as cryptography, intrusion-detection

systems, and game theory, must be considered in speciic areas, such as smart health, smart transportation, smart

grids, smart homes, and public security. The authors also stressed the importance of human error. Ahmad et al. [2]

discussed infrastructural transformation to smart cities, considering the CPS system as the pillar block for smart

cities. For example, the smart-city ecosystem in India has been improved by building robust networking and

enabling technological services. The analysis of security issues at various CPS-layer architectures as well as the

risk assessment and methods of securing CPS were presented in [10]. Ref. [112] analyzed the main CPS security
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threats, vulnerabilities, and attacks, as well as cryptographic and non-cryptographic CPS security solutions.

The threats were categorized based on the three layers of the CPS, and suggested solutions to these threats

were addressed in [62]. Ukachi [85] deined cyber-physical security threats for smart buildings, the negative

consequences of these threats, and the mitigation and defense mechanisms. In [110], authors discussed the

security threats and challenges in several applications of CPS. Mishra et al. [80] provided a complete scientiic

review of many new technologies, including their objectives, scope, and purpose of next generation CPS. In

[111], a novel integrated learning methodology is presented that efectively detects CPS attacks and accurately

identiies the type of attack in real-time. Ref. [71] discussed the CPS challenges of building automation systems

within the framework of the increasing openness and connectivity of intelligent buildings.

Table 1. Related review papers.

Techniques Domains

Reference Data-driven

system

Knowledge-

based system

IoT CPS Smart home

Mussab et al. [5] ✓ ✓

Jessamyn et al. [28] ✓ ✓

Tavcar and Horvath [108] ✓ ✓

Ahmad et al. [2] ✓

Terence et al. [53] ✓ ✓

Junjian et al. [90] ✓

Adam et al. [121] ✓

Kai et al. [42] ✓ ✓

Hadi et al. [46] ✓ ✓

Yosef and Qusay [10] ✓ ✓

Yaacoub et al. [112] ✓

Nam and Shailendra [62] ✓ ✓

Ukachi [85] ✓ ✓

Amit et al. [110] ✓

Stojkoska et al. [106] ✓ ✓

Conti et al. [25] ✓

Mishra et al. [80] ✓ ✓ ✓

Wang et al. [111] ✓ ✓

Li et al. [71] ✓

Buil-Gil et al. [16] ✓ ✓ ✓

Ansari et al. [8] ✓ ✓ ✓

Gaba et al. [39] ✓ ✓ ✓

This article ✓ ✓ ✓ ✓

1.2 Motivation

The proliferation of IoT devices has introduced new attack surfaces that bad actors can potentially exploit to gain

unauthorized access to sensitive data or disrupt system operations [8] [16]. Smart homes are prime examples of

IoT systems that are deeply embedded in our personal lives. The widespread use of smart home technologies has

resulted in new conveniences, as well as unique security and privacy threats that must be addressed. Moreover,

with the emergence of 6G [91], Industry 4.0 [59] and the integration of heterogeneous systems [35], data security

and privacy issues have been exacerbated, further underscoring the need for rigorous security analyses. As these

systems collect and process personal data, concerns about misuse and unauthorized access have arisen. This study

examines the knowledge-management processes of smart-home operations from a cybersecurity perspective. It

critically analyzes how smart-home technology obtains, stores, processes, interprets, and shares information. By

reviewing these systems, we aim to identify vulnerabilities, security risks, and areas for improving user privacy

and security.
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1.3 Contributions

This work presents a comprehensive survey on cyber-physical security in smart homes, analyzing existing

security techniques. It aims to guide researchers by identifying future research directions and leveraging smart

home contexts to enhance security. The key contributions are summarized as follows:

• We provide a detailed overview of knowledge representation and context-modeling methods used in smart

homes to identify sensing and actuating data.

• We survey decision-making approaches, their input and output data, and the real-time data required for

some of the proposed approaches. We also present a taxonomy of decision-making locations.

• We identify several threat models primarily for smart-home systems. Moreover, we discuss security

countermeasures that can mitigate the proposed attacks and threats to smart homes.

• We articulate smart-home test-beds and evaluation methods concerning the number of users and devices,

as well as the types of platforms and protocols used in each technique. We present igures showing the

evaluation settings and goals.

• Furthermore, we summarize most of the lessons learned from the reviewed studies. Finally, we highlight

the open challenges and discuss future research directions toward security in smart-home systems.

Section 1

Introduction

Section 2

Methodology Knowledge and Representation and 

context modeling:

• Data collection.

• Data Generator.

• Data Modeling Techniques. 

Section 3

Section 4

Decision making approaches:

• Techniques.

• Human involvement.

• Real-time data.

• Inputs.

• Outputs.

• Location.

Section 5

Countermeasures for threats and 

attacks:

• Threat model.

• Security countermeasures.

• Knowledge used for 

countermeasures.

Section 6

Testbeds and evaluation:

• Evaluation process.

• Evaluation factors.

Section 7

Lessons learned

Section 8

Research challenges and Directions

Section 9

Conclusion

Fig. 1. Structure of this survey paper.

1.4 Review Structure

The reminder of this paper is structured as follows. Section 2 details the literature review method. Section 3

covers contextual information and modeling techniques. Section 4 reviews the reasoning mechanisms for smart

home data. Section 5 describes countermeasures against attacks. Section 6 analyzes current evaluation methods.

Section 7 presents lessons learned. Section 8 ofers a summary and future research directions. Section 9 concludes

the review. Figure 1 illustrates the overall structure and organization of this study.
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Fig. 2. Search and selection process.

2 Methodology

This review follows the steps proposed by Kitchenham [63] [64]. The literature search and article selection for

evaluating knowledge-based cyber-physical security in smart homes published between 2012-2024 are illustrated

in Figure 2. We focused on scientiic databases including Google Scholar, Scopus, Springer, IEEE eXplore, ACM

Digital Library, Wiley Interscience, and Taylor & Francis Online.

2.1 Research uestions

The use of CPS for smart homes has grown considerably over the last decade. However, to the best of our

knowledge, no reviews have been done on knowledge-based mechanisms in smart homes. Hence, we aim to

bridge this gap by reviewing this subject. Our analysis was guided by the following research questions (RQs):

• RQ1: How should model the smart-home knowledge be represented and modeled?

• RQ2:What are the decision-making techniques, and how do these techniques capitalize on the data produced

in smart homes?

• RQ3: How is knowledge used for countermeasures against attacks and threats?

• RQ4: What evaluation strategies are implemented for evaluating smart-home systems?

• RQ5: What are the open issues that need to be investigated further regarding the security of smart homes?

These research questions were answered by fulilling the contributions of this study. Section 3 covers knowledge

representation and context modeling (RQ1). Section 4 addresses smart-home reasoning with contextual informa-

tion (RQ2) and countermeasures (RQ3). Evaluation methods concerning users, devices, protocols, and platforms

are discussed for RQ4. Finally, RQ5 explores future security directions for smart-home systems. Table 2 outlines

each research question and its rationale.

2.2 Data Analysis

Figure 3 provides a detailed overview of the publications reviewed during the literature evaluation. This visual-

ization encompasses a 12-year timeframe to capture the most recent and relevant research developments in the

ield. Figure 3a represents percentage of the paper venues, which is nearly the same for both conferences and

journals, at 46% and 54%, respectively. Considering the speciic details in Figure 3b, the irst striking feature is

that the IEEExplore dataset had the highest proportion. Moreover, the most signiicant number of studies were

published in the last three years (Figure 3c).
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Table 2. The rationale behind the research questions.

Research question (RQ) Rationale

RQ1: How to represent and model the smart home knowl-
edge?

To deine context types of smart home systems and ind out the pieces of
knowledge captured in these systems. With more focus on knowledge
representation and modelling techniques.

RQ2: What are the decision-making techniques, and how do
these techniques capitalize on data produced in the smart
home?

This research question examines the decision-making approaches used
in the smart home and explores its inputs, outputs, and location.

RQ3: What is knowledge used for countermeasures against
attacks and threats?

This research question focuses on determining and discussing the coun-
termeasures in the smart home against attacks and threats, which are
mentioned in this paper.

RQ4:What evaluation strategies are practiced for evaluating
smart home systems?

This research question aims to discover how the previous studies eval-
uate its proposed approaches.

RQ5:What are the open issues to be further investigated in
regard to the security of smart homes?

To determine a possible research area in smart home security.

45.9%
54.1%

 Conference
 J ournal

(a) The percentage of Conference venue

to Journal.

1.2%
1.2%

16.9%

20.5%

10.8%

10.8%

38.6%

 IE E E
 ACM
 S pringer
 E leseiver
 Taylor & Foncis
 Wiley
 Other

(b) The percentage of selected articles

base on publication.
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(c) Number of studies published per year.

Fig. 3. A comprehensive overview of the articles reviewed in various academic and professional venues over a 12-year period.

3 knowledge representation and context modelling

This section outlines the stages data undergoes before processing for decision-making. Figure 4 illustrates the

three main data processing procedures in smart-home systems: collection (Subsection 3.1), generation (Subsection

3.2), and modeling (Subsection 3.3). Each stage’s essential principles and procedures are thoroughly explained.

3.1 Data Collection

This subsection introduces context types in smart-home systems, explaining context-awareness and its role in

enhancing system eicacy, eiciency, and relevance. It covers how smart-home devices collect information and

discusses the manual and automatic data entry methods.

3.1.1 Context Types. Context is information that can be used to describe the circumstances of an entity, such as

a person, location, or object, and is deemed pertinent to the interaction between a user and an application; this is

referred to as contextual information [1]. Dynamism, stochasticity, and heterogeneity are inherent characteristics

of context [68]. As mentioned in [9], seven types of contextual information exist: personal, activity, physical,

device, systematic, application, and environmental. Table 3 presents the diferent types of contexts used in

smart homes. Personal context involves data about an individual’s habits and behaviors within their home,

enhancing user experience through smart home technologies. The activity context captures speciic actions

and movements of users and objects, improving experience via context-aware functionality. Physical context

pertains to the operational states of devices and sensors, optimizing comfort and eiciency [82]. Device context
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Data collection

• Context types.

• Context-awareness.

• Captured knowledge.

• Autonomous or manually entry.

Data generated 

• Purpose of collected data.

• Generated knowledge.

Data modelling

• Modelling techniques.

Continuous knowledge capturing and modelling
‣ Frequency of knowledge base updates.

‣ An autonomous or manual update.

Fig. 4. Dimensions of the three steps through which data in smart homes passes. It demonstrates the principles covered in

each level, as well as the method of updating this data based on survey papers.

includes operational characteristics and capabilities, ensuring smooth interoperability and resource optimization

[51]. Systematic context categorizes user behavior patterns for standardized representation. Environmental

context provides data on ambient conditions, contributing to awareness of living space conditions. For example,

the Privacy via AnomaLy-detection System (PALS) [34] assumes a physical context, such as location, time,

activity, and roles. In [72], the environmental context, such as temperature and dimmable light, were considered.

Additionally, in [33], [104], [103], [94] [109] and [88], the context of a home environment was sensed, and in

[92], the smart-home environment was sensed based on security functions. Ref. [102] the user-activity context to

correctly understand the behavior of users. The environment and application contexts are described elsewhere

[68]. Situational information provide the context for initializing a communication network [31]. The user context

was captured in [113] to determine the user expectation from the behavior of applications, and Ref. [4] covered

the personal data that should be protected. In [75], the systematic context for collecting network traic was

discussed. Regarding the application context, [36] and [119] are concerned with analyzing smart applications

to detect over-privileges in the SmartThings framework or types of attacks. Additionally, [81], [56] and [17],

described the application context. In [60], contextual information from the types of user and physical contexts was

presented. The device context is described elsewhere [43]. Amir et al. [94] focused on the number of applications

and users in smart homes.

3.1.2 Context-awareness. This describes a system with the ability to understand the intent of users to improve

its eiciency. Sikder et al. [102] proposed an Aegies+ platform-independent context-aware security framework

for smart homes that detects malicious activities. In [68], the authors presented a platform that enabled the

development of context-aware applications that could be adapted autonomously at runtime. ContextIoT [56] is a

context-aware permission model that restricts unauthorized device access and detects malicious activities in a

smart home. A context-aware authentication framework introduced by Ashibani et al. [9] is being developed for

smart-home applications to access devices.
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3.1.3 Captured Knowledge. Determining the data type to be used in a decision is the irst step in the decision-

making process. In [101], 219 diverse policies were gathered from actual smart home users, including 33 limitation

policies and 146 demand conlicts. Similarly, data were collected from 50 malicious users to assess the efectiveness

of the proposed system against these threats. In [102], the sensor features and smart-home device states were

obtained from day-to-day user activities as well as malicious data from the adversary model. In [34], cloud-service

providers gathered information about a smart home from the sensed data. In [33], the data collected from

IoT devices were stored remotely on the cloud and locally in the RES-Hub as a backup during a cloud outage,

as well as to authenticate requests and issue commands that end devices can verify. Chi et al. [21] collected

user-coniguration information from applications and sent it to a cloud. In [107], features of home entities and

set of concepts, devices capabilities, and security vocabulary were collected by cloud. ContexIoT [56] modiies

the application code to add security-focused logic patches to the application to gather crucial running context.

IOTGUARD [17] adds new logic to the source code of an application to collect data from it while it is running,

including devices, events, actions, predicates that control device actions, and numerically valued properties of

those actions. In [31], application network connections were tracked. In [113], user expectations were derived

from the behavior of a set of installed automation applications. The authors of [45] claimed that they collected

raw data from smart-home devices in real time. In [119], wireless packets were gathered, including Z-wave

and ZigBee data. SERENIoT [109] packet signatures from network traic. Mahadewa et al. collected an abstract

deinition of application-layer protocols and the internal behaviors of entities [74] [75]. In [115], a monitoring

system that gathers bathroom activities was proposed. The device state information gathered from the cloud

was utilized by RES-Hub [33]. Moreover, infrastructure for smart homes is being developed, as shown in [81].

Ding et al. collected inter-app trigger-action interactions and physical-channel information from the application

description [32]. In [104], data packets transferred over a network were obtained from a knowledge base. The user

conigurations were also obtained [88]. The approach in [9] uses static credentials, and contextual information.

Additionally, exchanged-message semantic names are compiled in [120], and HoMonit, proposed in [119] collects

wireless packets. In [29], the data gathered for the study comprises guidelines for developing Self-CPS, as well as

existing reference models and architectures pertinent to this ield.

3.1.4 Autonomous or Manual Entry. Two types of data-input methods are used during the collection process:

manual and automatic. Lin et al. [72] suggested that an automatic manager reduces the manual input from users;

however, in some circumstances, the user must still take action. In [101], users explicitly speciied priorities

and policies for smart-home devices. However, security analysts must provide input to HOMESCAN [75] [74].

In [34], the user provides feedback to an anomaly detection system. DepSys obtains user input to determine

application priority and policy [81]. IOTGUARD requires user input for application coniguration [17]. In smart-

home applications, users set their expectations [113]. In [88], the user identiies the coniguration of smart-home

devices. However, the states of these devices are obtained autonomously [102]. An algorithm for automated

categorization and decision making is proposed in [115]. An automatic instrumentation script was to extract the

coniguration information in [21]. The context-collection logic is responsible for gathering application variables

[56]. HanGuard automatically sends situational information to the home router through a control channel

[31]. According to Ashibani et al., this method does not require human interaction [9]. Additionally, HoMonit

automatically captures the wireless traic [119].

3.2 Data Generated

The data generated in smart homes empowers homeowners and residents with information and control, leading to

increased eiciency, convenience, security, and well-being. This subsection discusses the purpose of smart-home

data and the generated data.
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3.2.1 Purpose of Knowledge. Smart-home data may be collected for several reasons. For example, [72] aimed to

collect data to assist the system with reasoning about attacks and to respond appropriately to them. In [101],

contextual information was used to identify user roles and consumer expectations for smart homes. Aegis built

an activity context to distinguish between the benign and harmful uses of smart-home devices and sensors

for various user behaviors and patterns [102]. HOMESCAN can discover security issues from its knowledge of

smart-home implementation [75] [74]. Abnormalities in data collected from smart home device activities are

presented in [34]. In [115], the goal was to recognize potentially life-threatening events. RES-Hub aims to provide

resilience to smart homes when the cloud is unavailable [33]. Chi et al. collected application conigurations

to identify threats and minimise false alarms [21]. Depsys provides comprehensive solutions for specifying,

detecting, and resolving conlicts in the home [81]. In [56], context information aide users in diferentiating

between benign and malicious behavior. Unanticipated physical interactions between applications have been

addressed by IoTMon [32]. Celik et al. evaluated collected data based on a set of security and safety policies

[17]. In [31], situation information was compared with policies to ensure that they originated from a legitimate

home-area network phone. Expat captures this information from an installed application to ensure that user

expectations are not violated [113]. The knowledge base in [104] is used to protect smart-home devices from

network attacks. A user setup is required for devices to detect intrusions [88]. In [9], contextual information

was used for the authentication process. This is used to infers policies in which entities gain access control over

devices based on entity names [120]. Wireless traic is used to detect security threats in smart home applications

[119]. The goal of SERENIoT is to examine the network traic to and from IoT devices to detect and prevent

suspicious packets and connections [109].

3.2.2 Generated Knowledge. The data collected in smart homes provide important knowledge that can be used to

make decisions. In [72], the gathered contextual data was used to develop resource description framework (RDF)

triples to describe the relationships between the elements in smart homes. User priorities are produced from user

credentials and device policies [101]. In [102], a context array of several user behaviors was constructed. A local

labeled transition system (LTS) representation of system integration was generated from the collected traces [75]

[74]. Access-control decisions were produced in the context of smart homes in [34]. Chi et al. built a risk-ranking

model for cross-app interference threats [21]. In [81], the dependency information of a smart-home application

was inferred. In [32], inter-app interaction chains were built using an application analysis. Expat was used to

generate policies to be enforced on smart-home platforms [113]. Device-interaction rules were established to

warn users of threats [88]. User-deined rules were used to create home-security policies, that were subsequently

applied to devices [120]. The operations of SmartApps were derived from encrypted traic in [119]. By separating

packets and creating distinctive signatures, the behavior of the devices was retrieved in [109].

3.3 Data-Modelling Techniques

Figure 5 shows a taxonomy of the six diferent modelling approaches used to develop models and representations

in the context of smart-home systems. Each modelling strategy has a distinct purpose and address diferent

aspects of data modelling in smart-home spaces. An ontology known as secure smart-space ontology (SSSO)

is used to model a smart-space as a knowledge [72]. Soia et al. [34] represented the smart-home context in

a knowledge graph to aid in deining of rules for controlling data access. In [21], each IoT application was

represented by automation rules that adhered to the trigger-condition-action (TCA) paradigm to extract the

application’s rules for detecting threats. Tao et al. [107] proposed a smart-home domain ontology, an ontology-

based device description model, and ontology-based security management to fulill heterogeneity and security

requirements. In [32], the interaction behavior of physical channels was modeled by assigning appropriate values

to various physical channels to determine their distances from other. A uniied dynamic model is proposed in

[17] to represent the runtime-execution behavior of applications in states and transitions. In [113], an abstract
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Fig. 5. Types of modelling techniques.

model of an appiied smart-home platform was suggested to represent user-expectation invariants. Khan et al.

[60] suggested an ontology called the Cyber Security Guidelines Ontology (CSGO) to express knowledge about

security rules for interoperability and comprehension among smart-home users. In [92], a smart-home network

used a multi-agent approach to achieve shared security objectives. The Haystack [38] and Brick ontologies

[12] [37] are uniied semantic metadata standards for building assets and their interactions that enable the

successful interoperability and automation of building systems and analytics. The RDF is a semantic technology

that standardizes the deinition and use of metadata [30]. The reference architecture for self-adaptive CPS was

constructed by integrating the guidelines of the process based on software architecture methodology with the

approach suggested in [29].

3.4 Continuous Knowledge Capturing and Modelling

This subsection focuses on the pattern of knowledge-based updating and manual and automatic updates. These

indings provide insight into the accuracy of the retrieved data and whether human intervention is required.

3.4.1 Frequency of Knowledge-base Updates. After each requested service is completed in the smart system, the

RDF triples are updated, as shown in [72]. User-priority and device-policy lists are updated based on the user

expiration date in the system and each time another policy is issued, respectively [101]. Every time a new device

or application is introduced to the system, the Aegis framework updates the training dataset [102]. HOMESCAN

updates its collected information whenever new states are inferred [75] [74]. When PALS receives feedback from

a user, it updates its knowledge graph [34]. Regular status updates from the cloud are sent to RES-Hub [33].

DepSys updates the dependency information of an application when conlicting dependencies are observed [81].

The environmental variables of the applications change during operation [56]. The security policies of HanGuard

are updated when a mobile phone is connected to the network [31]. Expat modiies previous rules after creating

an instrumented rule ile [113].

3.4.2 Autonomous or Manual Updating. The manager is responsible for updating the RDF triples automatically

[72]. Kratos automatically inds any expiration dates and new additional policies [101]. In [102], the training

dataset was automatically updated when a new device was introduced. Additionally, HOMESCAN updates its

knowledge automatically [75] [74]. In [56], when an application is executed, its environmental variables are

updated automatically. In [109], the policies were automatically updated.
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4 Decision Making Approaches

The smart home context generates vast data from appliances and IoT devices, crucial for decision-making.

Smart-home reasoning systems ensure occupants’ eiciency and comfort by determining the best actions [77].

Self-adaptive systems make dynamic decisions to meet functional and non-functional criteria [97]. Efective

decision-making improves quality, eiciency, reduces risk, and enhances outcomes. This section discusses

decision-making approaches, their inputs and outputs, and whether they are performed locally or remotely. Key

decision-making topics are also presented. Figure 6 presents a comprehensive taxonomy of decision-making

approaches in smart home systems. It classiies these approaches based on input data types, incorporation of

real-time data, output nature, decision-making location, and human intervention or interaction in the worklow.

Decision Making Approaches  

Decision making techniques

Decision inputs

Decision outputs
Real-time data

Human 

involvement

Decision Making Location

Smart phone

Outside home

Local server

Controller

Smart systems

Gateway

Smart appliances

Ontology approaches 

Analysis methods 

Algorithms 

Models

Others

Sensor's data

Events

Requests

Others

Packets

Access control decision

Inside home

Alerts

Suspicious Data

Policies

Others
Cloud

Fog Server

Fig. 6. Decision making approaches taxonomy.

4.1 Decision Making Techniques

Better decisions in line with smart-home concerns can be made by choosing the most appropriate method for

certain situations. Building a successful and functional context inside a house requires excellent decision making.

Table 4 summarizes the decision-making techniques used in these studies.

4.1.1 Ontology Approaches. A secure smart-space ontology was suggested to help analyze and reason the state

of the smart space in a way that is intelligible by machines [72]. A context-based ontology [60] was developed to

help security managers make decisions on information security.

4.1.2 Analysis Methods. In [75] and [74], a hybrid analysis that included dynamic testing, white-box analysis,

and trace analysis was proposed. Jia et al. [56] suggested using taint analysis to monitor runtime data and

then identify the data source while displaying contextual information to the user. Ding and Hu [32] used a

risk-analysis mechanism to assess the dangers of discovered chains of inter-app interactions. Side-channel

analysis was performed by HOMONIT to monitor encrypted wireless traic [119]. To identify the weaknesses in

the framework architecture, an empirical investigation of the SmartThings platform and its applications was

conducted [36].

4.1.3 Algorithms. Arun and Reza proposed a logic-based algorithm for detecting typical user behavior at access

points and demanding user authentication [57]. IOTGUARD built a graph algorithm to extract the events and

actions of applications [17]. Ref. [92] presented a multi-agent algorithm compromising agents representing
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multiple devices or subsystems in the home that work together to achieve a common goal. Furthermore, context-

aware systems made decisions based on contextual information such as user location, behavior, and preferences

[34] [9]. An activity-recognition algorithm used sensors and data analysis to recognize and anticipate human

actions [102] [115].

4.1.4 Models. Chi et al. presented a risk-ranking model that could assess the severity of identiied cross-app

interference risks [21]. The user-speciic score threshold for voiceprint veriication was calculated using a Gaussian

mixture model (GMM) [96]. Individual agents in the Beliefs, Desires, and Intentions (BDI) model functioned as

autonomous agents in decision making [92]. In [3], the STRIDE and DREAD models identiied threats in the

network.

4.1.5 Others. Security-management providers have been presented in order to identify and address the se-

curity/privacy risks for IoT [104]. The system proposed by Dutta et al. utilized semantic web technologies to

make access-control choices [34]. In [115], an efective-reasoning module was proposed to identify user-critical

scenarios and supply data for lifestyle-pattern reasoning and daily function-monitoring modules. ICN-iSapiens

deploys intelligent monitoring and control applications efectively and eiciently by using information-centric

networking [7]. Edge servers can ofer localized computation and storage [89], and a coniguration tool was

proposed to help users develop device-interaction rules [88]. Mutual authentication between smart devices and

smart-home gateways was proposed in [45]. The self-signing technology [58] maintains the integrity of its

security framework. The proposed method for mediating network communication across devices in the same

network was made possible by software-deined networking [43]. In [109], Blockchain was proposed to detect

anomalies in networks. A risk-based permission system presented in [94] reduces malicious applications in the

system [29]. De et al. proposed a control loop technique that entails ongoing system monitoring, data analysis,

planning of necessary adaptation actions, and executing those actions to ensure the system can adapt to runtime

changes autonomously [29].

4.2 Human Involvement

An automated manager signiicantly reduces human interaction while still requiring user entry [72]. Kratos [101]

involved users in deining their policies and priorities in addition to resolving diicult conlicts in the system.

In [74] and [75], a security analyst required speciication-extraction process for the proposed system. When

conlicts occur, DepSys may require human input to adjust the policy [81]. In [17], the user entered the application

coniguration and runtime prompts. A context-based ontology [60] involved the user in the modelling of security

guidelines. Security and Privacy for In-home Networks (SPIN) keeps the user in control to stop undesirable traic

lows [69]. Manju and Albert introduced an approach that allowed users to conigure smart-home devices within

the internal network of smart homes [88]. In [9], the authentication information was input by users for a security

coniguration. Alshaboti et al. proposed a user-deined network policy that incorporates users into a security

system [4].

4.3 Real-time Data

Real-time notiications are provided to users via Aegies+ [102]. A sensor knowledge graph contains real-time

data gathered from smart-home sensors [34]. DepSys utilises real-time data to evaluate its approach [81]. The

platform proposed in [7] was implemented using real-time data. In [89], the processing of sensor data in real-time

was facilitated using edge servers. SecFHome enables a smart gateway to analyze collected data in real time [45].

Contextual data were obtained and evaluated in real time from secured sources [10]. HoMonit captures wireless

channel packets and detects misbehaviors in real time [119]. Additionally, SERENIoT monitors IoT-devices data

in real time [109].
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Table 4. Decision Making Methods.

Techniques Reference Capabilities Limitations

Ontology approaches
[72] Dynamic access control with high performance

capabilities.
The suggested default policies are not appropriate
for all possible cases. Manual labor is still required
even if the manager strives to minimise human
intervention.

[60] Support automation. There are limited input sources and a lack of imple-
mentation.

Analysis methods

[74] [75] Efectively defend against various attack models. Interacting with the system is necessary for the
security analyst.

[56] Efectiveness in identifying attack. Based on a user-made decision with overhead com-
putation.

[32] Discover unexpected behaviors. Based on user involvement with added overhead.
[119] Detect the misbehave of smart applications. Introduce overhead computing.
[36] Used combination of analysis mechanism. Conservative.

Algorithms
[57] Local decision. Based on user behavior only.
[17] Reduce the overhead. Need user interaction.

Models

[21] Users do not need to set security objectives. False alarm.
[96] Used dynamic threshold method. The likelihood of a false rejection rate still exists.
[92] An autonomous entity. Cannot make decision on real time data.
[3] Conscious of potential physical harm.

Others

[104] Controls the user’s irewall rules in a lexible man-
ner.

Small scale of the test environment.

[94] Static risk level. Human intervention.
[115] Adjustable to each user. As the number of possibilities is limited, a false

alarm may occur.
[7] Fog services. No implementation in real-world environment.
[89] Reduce latency. Sufer from delay.
[88] Increasing user awareness. Prone to human errors.
[45] Real-time decision and low latency.
[58] Done inside the smart home appliances. Not evaluate its efectiveness.
[43] Convenient deployment. User intervention caused delay.
[109] Distributed decision. Complicated and take time to develop.
[34] Dynamic reasoning. Coarse-grained policies.

Not mentioned

[101] It has the ability to control a variety of individuals
and devices.

If there are too many diicult conlicts, it could
result in stalemate.

[68] Self-adapt and self-aware. Complex.
[81] Flexible. Non-critical safety system.
[33] Reliability. Complex.
[31] Static phone operating system. Flow decision cache limit.
[113] Support remote and local checking. High overhead.
[69] Human intervention.
[9] Real-time and continuous authentication. Human intervention.
[120] Both inputs and outputs are sent securely. Single point failure for controller.
[4] Support local and remote security.

4.4 Inputs for Decision-Making Process

Diferent inputs are required depending on the approach employed. However the following components are

present in many smart-home decision-making methods.

4.4.1 Sensor Data. An efective reasoning module was suggested based on the sensor data that appear in

the activity monitoring system proposed [115]. In [33], data collected from smart-home devices and regular

cloud-status updates were employed as inputs to the proposed system.

4.4.2 Events. In [72], a succession of events that took place in a smart space was processed by an autonomic

manager to assess the situation. In [17], sensors collected application-speciic events and their accompanying

actions and predicates, and then sent them to a hub/cloud-based processing device for analysis.
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4.4.3 Packets. Data packets transmitted across the home network were analyzed in [120], and control packets

of the local network were analyzed in [43]. Side-channel data from secured wireless traic were utilized as the

input in [119]. In addition, IoT-device IP packets were tracked in [109]. In [4], network-traic analysis was used

to make decisions.

4.4.4 Requests. In [45], user-access requests for smart-home devices were monitored to maintain secure commu-

nication. Tyche used application permission requests for device services as an entry into a risk-based permission

model [94].

4.4.5 Others. The priority assignment information and device rules are entered by the user in [101]. System

implementation, test cases, and prior knowledge serve as the foundation for HOMESCAN [74] [75]. In [34],

decision-making was based on the user context and device type. The context reasoning of iCasa on its objectives,

resources, and runtime architecture are presented in [68]; the coniguration details are captured in [21]. DepSys

analyzes the metadata of applications to discover threats [81]. In [57], this was based on user actions and behaviors

when making decisions. Amadeo et al. [7] recorded stakeholder inputs, user preferences, and dynamic context-

related aspects. Inter-procedural control and data-low information deined the context of a smart-home in [56].

IoTMon can record physical interactions [32]. HanGuard gathers runtime data from the mobile devices of users

[31]. In [96], the log ratio score was used by an analysis algorithm to make decisions. In [113], user expectations

were identiied. The design of the SmartThings programming framework was discussed in [36]. Threats related

to networks were analyzed in [3]. The user and physical contexts were used to build an ontology [60]. In [104],

network activity was monitored. The device-security features were captured in [69]. DBI were inputted into the

proposed model in [92]. The devices connections were veriied as secure in [88]. A module’s codes are examined

to ensure their integrity [58]. In [9], information on a user’s location, proile, calendar, request time, and access

activity patterns was gathered. Additionally, Kumar et al. captured data from home devices [67].

4.5 Outputs for Decision Making-Process

Decision-making procedures generate outputs that aid decision-making and reach conclusions; thus, the outputs

of decision-making methods depend on their input.

4.5.1 Access-Control Decision. An in-context sensitive action is provided by ContexIoT [56]. The HanGuard

router is responsible for making access decisions [31]. Tyche implemented risk-based access-control decisions

for IoT systems. In [58], the authors supported access control to identify user permissions. Services and data

accessed by platform components were discussed in [68].

4.5.2 Alerts. In [92], security alerts were sent to security agents when an attack on a smart-home network was

detected. The user was informed of the incursion using the approach suggested by the authors [57]. In [88],

unwanted contacts triggered intrusion alarms.

4.5.3 Suspicious Data. Sivaramman et al. proposed a security solution for detecting suspicious behaviors [104].

The SPIN system distinguishes between normal and suspicious behavior at the network level [69]. SERENIoT

[109] diferentiates between malicious packets and connections using security policies.

4.5.4 Policies. Adaptive security policies are applied to threats that occur in the proposed system [72]. Kratos

uses a policy negotiation algorithm to resolve user disputes and optimize diferent conlict policies [101]. Moreover,

Expat implements contextual access control policies for smart-home platforms for smart-home applications [113].

PALS provides context dependent access control policies [34].

4.5.5 Others. In [75] and [74], security issues were discovered in smart-home systems. The system proposed in

[115] used a reasoning algorithm to generate daily activity reports and send notiications. RES-Hub generates
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commands according to user speciications [33]. HOMEGUARD produces analytical indings [21]. DepSys ad-

dresses the conlicts detected using smart-home technologies [81]. Real time services were provided in [7]. Ding et

al. proposed an interaction-chains algorithm to measure the risk level of interactions [32]. IOTGUARD recognizes

hazardous and insecure states in various applications [17]. The user-authentication method diferentiates between

legal and illegal users in the system [96] [9]. Design laws were discovered in [36]. Risk assessment that identifying

cyber-physical risks were presented in [3]. Security guidelines were provided in [60]. User commands were issued

to carry out various activities in [89] and [120]. The low [43] and security decisions [4] were generated from

smart-home network services, and inappropriate behaviors were identiied in applications [119].

4.6 Decision Making Location

Our analysis categorizes studies and approaches based on the location of decision-making within smart home

solutions. We diferentiate between decision-making processes occurring inside the home and those relying on

external decision-making, as illustrated in Figure 6.

4.6.1 Inside the Home. The attack surface for potential cyberattacks can be reduced by securing devices and

data inside the home. Thus, smart-home networks is more challenging for attackers. Six locations in the home

process data.

• Smart Phone. HOMEGUARD [21] collects coniguration information using a coniguration collector to

detect cross-app interference threats without requiring users to identify the security objectives. In [81],

the authors collected an application’s metadata to resolve conlicts at installation and during the run

time. Although DepSys is lexible and allows dynamic program addition and removal at runtime, safety

criteria were not considered. HanGuard suggested a monitoring on user phones to create access control for

applications [31]. In [96], the parameters of the GMM were compared with the dynamic threshold score to

distinguish between legitimate and unauthorized users.

• Gateway. SERENIoT [109] monitors network traic to and from IoT devices to detect and block suspicious

packets and connections. The reasoning module proposed in [115] uses raw data from (presence, humidity,

and microphone) sensors to generate a daily activity report, trigger notiications, and send alerts. In some

cases, a decision made in the gateway near a smart home may result in a false alarm. An autonomic manager

[68] reasons over three types of models, which include available services, goals, and architecture, before

making a decision to grant an application that is self-aware and self-adapted for the current situation, unless

it is complex. In [33], when the cloud is unavailable, RES-Hub collects data from sensors and sends user

speciications as commands to the actuators. A tool informing users of network intrusions was proposed

by Pillai et al. In [45], a smart gateway made the decision to securely collect and process data transmitted

by smart devices in real time [88]. In [9], a secure gateway was proposed based on gathering necessary

contextual information and evaluating access to smart-home devices.

• Controller. Ref. [43] suggests the use of controller and non-controller devices. Controller devices only

interact directly with controllers or the cloud to minimize privileges; thus, controllers issue requests from

smart home devices. IoT controller devices in the home are used to control smart homes, as shown in

Sovereign [120], which suggests that a local controller manages the authentication and access-control

system.

• Local Server. Jose et al. [57] detected user activities and behaviors at multiple access points. These behaviors

were compared with accepted user behavior to spot intrusions or attempted intrusions. This study analyzed

and stored the database at home; however, this approach is not signiicantly more secure because of the

possibility of hackers gaining access to the IoT devices. In [17], security services approved or rejected

actions and used graph algorithms to reduce the burden of policy checking. To gather data from sensors and

deliver commands to actuators, Qashlan et al. [89] developed smart-home multi-edge servers in addition to
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cloud storage. The edge nodes conducted transactions, whereas the cloud was used for extensive analysis

and long-term archiving.

• Smart Appliances. In a study by Lin et al. [72], an autonomic manager was responsible for analyzing system

events, such as user requests and threats, to produce adaptive security policies for IoT-based systems. The

primary strength of this manager was dynamic, and responded to events in an adjustable manner instead

of being dependent on default policies, which were inappropriate in some cases. The ontology suggested

in [60] assisted the security manager in making decisions regarding the user and physical situation for

the smart-home devices. Kang et al. [58] provided security services for smart homes by ensuring device

authentication, availability, and data integrity. They employed access control and self-signing mechanisms

to defend themselves against threats.

• Smart-Home Systems. HomeScan [74] [75] seeks to identify as many security laws as possible in partially

implemented smart home integrations. Although it provides dynamic analysis, the security analyst must

interact with the system to perform the required functionalities. The authors of [3] used threat analysis

and risk assessment to identify threats and system-afected areas that investigators should focus on. The

authors in [69] suggested the use of a privacy manager that allows users to manually prohibit IoT devices

on a network that exhibit potentially unfavorable behavior.

4.6.2 Outside the Home. Sending data from smart home devices to cloud servers for analysis, storage, and extra

processing allows for the remote processing of smart-home data on the cloud.

• Cloud. In [101], a policy manager evaluated device policies and user priorities collected by the backend

server, started user negotiations to settle conlict needs, and created the inal policies. The policy manager

can manage diferent users and devices; however resolving diicult conlicts may become impossible if too

many exist, thereby necessitating user engagement. Dutta et al. [34] proposed a cloud-service provider

that is responsible for dynamic reasoning based on user context, devices, and attributes. In [56], a user

could make an informed choice regarding the control low, data low, and runtime value, with the aid

of the cloud-based permission service to conduct access-control operations. By examining SmartThings

applications, IoTMon [32] directs developers and users to reduce the risk of inter-app interaction chains.

Moosa et al. [113] proposed a satisiability modulo theories (SMT) solver on a platform server to verify that

policies satisfy the user expectations. The Samsung SmartThings programming framework was analyzed

in [36] to identify design weaknesses using an empirical analysis including static analysis techniques,

runtime testing, and manual analysis. In [104], the security management provider was responsible for

identifying unusual network activities. A framework for multiple agents engaging in complicated reasoning

is known as BDI modelling [92]. Within the cloud service layer, BDI reasoning for agents is used to detect

network threats. In [67], the context of a smart home was responsible for the authentication procedure. Ref.

[119] presented a system for monitoring the smart-home applications of SmartThings based on encrypted

wireless traic called HoMonit. In [4], the proposed security services monitored network traic and issued

security alerts. Tyche [94] proposed a permission-based model to categorizes access requests into three

risk levels to assist users in decision makings.

• Fog Server. Fog computing extends cloud capabilities by ofering computation and storage resources at the

edge of the network, closer to IoT devices and end users [48]. Amadeo et al. [7] suggested remote cloud

and fog layers to enable real-time systems to monitor and manage smart home applications.

5 Countermeasures for threats and atacks

In the following subsections, we present common countermeasures and best practices for protecting smart homes

against diferent types of attacks, such as adversarial attacks. We discuss the threats speciic to each category and

the corresponding countermeasure approaches and strategies both in the literature and those used in existing

ACM Comput. Surv.



18 • A. Alsufyani et al.

systems. Finally, the knowledge employed in the countermeasures is discussed (Subsection 5.3). Figure 7 presents

a comprehensive compilation of 12 threat models and the corresponding countermeasures speciically tailored to

the smart-home domain, as proposed and analyzed by existing studies.
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Fig. 7. Existing related studies provide examples of threat models for smart homes, along with accompanying countermea-

sures.

5.1 Threats Model

Smart homes face increasing threats as the number of connected gadgets rises. Therefore, creating threat models

is essential to identify potential security vulnerabilities in these automated environments. Key highlights of

common threat models for smart homes are presented below.

5.1.1 Security Privileges. Four types of security-privileges threats exist: First, over-privileged control, as in [101]

[119], where smart devices are controlled by users in ways that are beyond what is necessary for their intended

functioning, which may lead to unauthorized device access. Fernandes et al. [36] discussed architectural faults in

SmartApps that result in overprivilege. Second, privilege abuse and unauthorised system changes by smart home

users are potentially dangerous because they may lead to the installation of unknown applications [101]. The

third is privilege escalation, which is the expelling of system users possessing devices [101]. Previous studies

highlighted how malicious program can access unapproved devices and sensitive event data due to the attackers

escalating their privileges and causing security issues [32] [56]. Finally, transitive privilege occurs because of the

multi-user, multi-device smart-home access control, which is insuicient, inaccurate, or uncaring [101].

5.1.2 Event Spoofing. A false event is created and legitimately activates certain devices [119]. Because Smart-

Things lacks appropriate security measures, Fernandes et al. developed this attack against it [36].

5.1.3 Malicious. Ref. [94] presents a malignant SmartApp. HomeScan [75] [74] conducts analysis against mali-

cious control points, malicious hub, and malicious smart-device attacks. Owing to design and implementation

issues in applications, Ref. [113] also investigated in harmful applications. Soteris et al. described IoT devices

that consider the local network as vulnerable to malicious software [31]. IOTGUARD [17] modeled harmful code

that is added to an application or provides user access to a program that can lead to an unsafe situation. In [32]

and [56], attacks occurred because a malicious application resulted in unexpected behavior. An application that

modiies the status of connected devices in a speciied manner to launch a malicious application was mentioned

in [102].
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5.1.4 Compromised Atack. A compromised SmartApp [94] is the outcome of approving permission requests

without understanding the danger an application presents, and an application may also seek more privileges

than required.

5.1.5 Local Network Atack. Ref. [109] considers malware in IoT devices from a local network. Additionally,

a compromised system in the local network via vulnerable devices is studied in [43] [75]. In [61], the authors

introduced a system that emphasizes access control mechanism to enhance security.

5.1.6 Internet Atack. Corentin and David considered Internet viruses in IoT devices [109]. An attack at the

network level was deined in [104]. Eavesdropping, intercepting and changing control activities, and intercepting

and changing administration activities are the three forms of network attacks researched in [75] [74].

5.1.7 Denial of Service (DOS) Atack. In [89], a DOS deined in which the attacker sends the target a high number

of transactions to prevent the target from being available. Skider et al. presented a malicious application that

terminates all active jobs on smart devices at a certain value [102].

5.1.8 Modification Atack. As mentioned by Qashlan et al. [89], an attacker may attempt to change or remove

stored data for a speciic person or device.

5.1.9 Cross-App Interference threats. Ten types of cross-app interference threats were identiied by Chi et al.

[21]. They are divided into two action-interference threats, four trigger-interference threats, and four condition-

interference threats.

5.1.10 Impersonation Atack. Skider et al. measured Aegis’s performance against impersonation attacks in which

an attacker uses stolen code to open a smart lock by posing as a legitimate user after battery-monitoring software

leaks the unlock code over SMS or an application that records voice commands and plays them back to pretend

to be real users [102].

5.1.11 False-Data Injection. A smart home may contain a malicious application that uses falsiied data to

performed harmful actions on a smart-home device [102].

5.1.12 Side-Channel Atack. An installed smart home application with design laws can undertake lawful but

exposed side-channel actions that can be exploited by other applications in the system or an attacker [102].

5.2 Security Countermeasures

We classiied studies based on their security purposes. Some focus on mitigating attacks and protecting smart

homes, while others aim to detect malicious attacks or raise alerts. Table 5 presents the classiication of counter-

measures from related research.

In [101], policy negotiations and conlict resolutions were suggested to improve security. Aegis is a context-

aware security system that monitors user behaviors in smart homes to identify malicious conduct [102]. Mahadewa

et al. proposed a system to discover security laws in the implementation of smart-home integration [74] [75].

In [34], an anomaly-detection engine was introduced to produce warnings regarding suspicious actions in a

home environment. A reasoning module was proposed in [115] to identify user-critical scenarios and ofer data

for modules that monitor daily functions and lifestyle-pattern reasoning. HOMEGUARD [21] aims to detect

cross-app interference threats in smart-home applications. Jose et al. [57] proposed a logic-based security method

to detect intrusions in smart homes and provide alerts. IoT threats are recognized and countered by ContexIoT

[56]. IOTGUARD [17], a dynamic policy-based enforcement system for the IoT, detects insecure device states and

blocks them. Khan et al. [60] developed a context-based ontology that guides users to mitigate vulnerability risks.

In [92], a multi-agent collaboration model was presented to detect threats in a smart-home network. Pillai et

al. [88] developed an intrusion detection system to detect undesired actions in smart-home devices and alert
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Table 5. The countermeasures purpose for proposed threat model.

Purpose Studies Threat model Countermeasures

Detection

[21] Action-interference threats, trigger-Interference threats, and condition-

interference threats.

[102] Impersonation, false data injection, side channel attack, DoS, and trig-

gering a malicious app.

Context-aware framework [102].

[74] [75] Internet attack, local network attack and event spooing.

[101] Over privileged control, privilege abuse, privilege escalation, and tran-

sitive privilege.

Access control system.

Prevention

[67] Message forgery, message replay, masquerade attack, device compro-

mise, DoS threat, password guessing, and man in the middle attack

(MIMA).

A secure session key-based unique

addressing scheme (SSKUAI).

[89] Denial of Service and modiication attacks. A hierarchical defence mechanism.

[31] Malicious. Enforcement systems.

[32] Privilege escalation and malicious. Context-based permission system.

Mitigation

[94] Malicious and compromised attack. A risk-based permission model.

[113] Malicious. Enforcement systems.

[43] Local network attack. Access control mechanism.

Combination

[104] Internet attack. Security management provider.

[119]

[36]

Over privileged control and event spooing.

[56] Privilege escalation and malicious. Context-based permission system.

[17] Malicious. Enforcement systems.

[109] Local network attack and internet attack. Security policies.

[61] Unauthorized access. Access control system.

users. In [52], authentication vulnerabilities caused by application-developer mistakes were reported. Zhang et al.

observed a smart-home application to detect inappropriate behaviors and alert users via text messages [119].

Doan et al. proposed an RES-Hub using the OAuth 2.0 authentication and authorization architecture to ensure

safe access and management over home services and devices while the cloud is down [33].

In [31], the HanGuard system was proposed to protect smart-home networks from mobile-application attacks.

Sivaraman et al. recommended the use of software-deined technologies to protect IoT devices from unwanted

network activity [104]. Ref. [89] used blockchain technology and edge computing to provide resistance against

modiications and DoS attacks. Ref. [69] presented a platform that protects a home network by blocking traic

low and devices that cause attacks. Guo et al. [45] proposed an authentication scheme to secure communication

between the gateway and devices. In [58], a security framework that ofers an integrity mechanism for preventing

security risks by utilizing self-signing and access control approaches was introduced. A context-aware authen-

tication framework was presented to secure communication and mitigate attacks [9]. Kumar et al. proposed

a scheme to authenticate the communication between a user and smart home using a secure key session [67].

SERENIoT defends IoT devices from threats by blocking traic that is diferent from the speciications [109].

In [7], enhanced security was achieved because data are kept at the network edge and hostile attacks have a

lower chance of success. Threat-mitigation policies have been proposed to minimize risks [72] suggested threat

mitigation policies. Ren et al. [96] developed a mobile-authentication system to reduce false rejection rates. Expat

[113] safeguards appiied smart-home systems from hazards posed by rogue or malfunctioning automation apps.

To mitigate the afected devices, Goutam et al. established least-privilege policies [43]. An IPv4 address-resolution

protocol (ARP) server was suggested as a security measure to counteract ARP spooing attacks [4]. In [94], a

proposed model for smart homes reduced the risk of overprivileged applications.
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Table 5 provides an overview of the countermeasure against the proposed threat model. A secure session

key-based unique addressing scheme [67], was proposed to monitor smart home IoT networks by altering the

conventional IPv6 protocol. A hierarchical defense strategy was proposed [89] for resilience against modiication

and DoS attacks. Sivaraman et al. [104] introduced a security management provider entity that ofers security

and privacy to home IoT devices as a service. Kratos [101] proposed an access-control system that resolves

conlicts between user requests to preserve smart home security. A context-based permission system, ContexIoT

[56], overcomes the threat model by including data dependence in the context deinition. In [94], a risk-based

permission model that reduces malicious application attacks was presented. An enforcement system was proposed

in [113] to prevent the installation of malicious applications. The IOTGUARD directly prevents dangerous and

undesirable conditions in single, and multi-app contexts [17]. In [31], secure a smart-home network was secured

by enforcing access control restrictions across user phones and IoT devices. Hesita deployed a least-privilege

network strategy to reduce the danger of compromise in smart homes [43]. Thomasset et al. developed security

policies for IoT devices to detect and block aberrant behaviors [109].

To improve the security of a smart home, access-control techniques must be included. The literature identiies

ive diferent access control techniques:

(1) Multi-user Access Control: Kratos [101] proposed a multi-user smart-home access-control system that

addresses the diverse and conlicting demands of diferent users.

(2) Context-aware Access Control: The attribute-based access control (ABAC) model [66] determines the access

control for devices and data in the smart-home environment [34]. ContexIoT [56] is a permission-based

system that ensures the contextual integrity of IoT apps during operation. In [113], policies for ine-grained,

contextual access control for smart-home platforms were proposed. The context-aware authentication

framework introduced by Ashibani et al. [9] protects smart devices from unauthorized access by both

anonymous and known users.

(3) Situation-aware Access Control: Demetriou et al. [31] gathered situational information via user-space

applications to detect whether an authorized application was establishing a network connection with a

target IoT device.

(4) Network Access Control: Distributed-access control networks were recommended by [89] to guard against

unauthorized data access in smart-home systems that utilize ABAC. Hestia [43] is a default access control

mechanism for devices in a smart-home network that is lexible to scale with changing smart-home

environments and simple enough to be deployed at present. In [120], access-control policies for smart-

home local networks that authenticate entities through data encryption and decryption were proposed.

Mohammed et al. introduced static and dynamic access controls, both of which can be used to prevent or

block malicious activities [4].

(5) Risk-based Access Control: People may perceive varying levels of danger as acceptable; thus, Tyche

developed risk assessments of access control requests from applications by users [94].

(6) Security Role: In [101], ive various roles in smart homes are indicated to understand user priority. By

grouping applications into four categoriesÐenergy, health, security, and entertainmentÐ a semantic-aware

multilevel equivalence class-based policy irst introduced in [81], reduces the cognitive strain on users.

Each mobile device connected to the home network has a role assigned by HanGuard, such as HAN user

for accessing a speciic home domain, admin roles for all domains, and guests for unregistered devices [31].

5.3 Knowledge Used for Countermeasures

Smart homes must be kept secure with the aid of defenses against attacks based on speciic knowledge that has

been gathered previously. In [72], countermeasures were applied based on the access policy, security/trust/threat

levels, assessment policies, threat-mitigation policy, and contextual security information. IOTGUARD gathers
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application-speciic data from its source code to enforce rules that prevent stop undesirable behaviors [17]. The

router receives the runtime scenario from the user’s phone and acts accordingly to enforce the policy [31]. User

voiceprints were used in a dynamic-threshold technique to determine speaker ratings [96]. Expat [113] reviewed

user-entered policies to ensure that they met user expectations. Using access-control rules, Sivaraman et al.

developed a security management provider entity to secure IoT devices at the network level [104]. In [89], the

rules and regulations upheld by blockchain miners and smart contracts were used to safeguard smart-home

appliances. Devices in SPIN with security capabilities can prevent traic from unreliable devices [69]. In [92],

data gathered using the BDI model was used to achieve security. The rules deine how the detecting device

interacts with devices in the smart-home network to identify intrusions and undesirable behaviors [88]. SecFHome

introduces an authentication mechanism to secure data after transferring the session keys [45]. Security dangers

are reduced by deining the functions of each module in the suggested architecture [58]. Ashibani et al. proposed

a context-aware authentication system for smart homes that uses the user’s location, proile, calendar, and

access-behavior patterns to enable access to home devices [9]. Secret keys and device identities were used as

knowledge to secure communications over a smart-home network [67]. Sovereign leverages semantic names for

resource identiication, security implementation, and the deinition of security rules [120]. Hestia implemented

least-privilege policies to protect smart-home security [43]. In [4], network attacks are reduced by implementing

various access-control measures. Physical-device operations are used as knowledge to assess its potential threats

[94].

6 Testbeds and Evaluation

Testbeds and evaluations test and assess theories, models, and hypotheses, allowing researchers to verify if

suggested concepts work in practical settings. The following sections discuss the evaluation procedures and the

factors used in these strategies.

6.1 Evaluation Approaches

This section focuses on the evaluation strategies employed in selected studies. A summary of the evaluation

methods is present in Table 6.

35.3%
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Fig. 8. Evaluation goals.
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Fig. 9. Evaluation setings overview.

To validate the performance of an autonomic security manager, Lin et al. [72] proposed a case study of a

conference room with a large number of events. In [101], a case study was conducted to evaluate the efectiveness

and overhead of Kratos. The efectiveness and feasibility of Aegis+ were tested by building a smart-home testbed

[102]. Case studies were implemented in [74] to ind the security issues. Three case studies were conducted

to assess the applicability of the risk-based approach [94]. In [3], a case study was conducted to evaluate the

proposed model and provide a proof of concept for compromised devices.
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An experiment was conducted in a laboratory to highlight the vulnerability of smart-home devices [103].

Lalanda et al. simulated the ICasa platform [68] to measure the complexity of services, timely execution, and

adaptation cost. In [33], a demonstration was presented as a proof of concept for SmartThings devices. The authors

of [21] developed experiments to prove that HOMEGUARD can detect cross-app interference threats. Static and

run time analyses were used in [81] to detect conlicts in a smart-home system. The CASAS dataset [27] was used

for the runtime analysis, which lasted 34 days. The experiment developed by Jose et al. [57] was used to observe the

user behavior at diferent access points in a studio apartment over a 30-day period. Ref. [107] evaluated the system

performance by designing prototypes and proofs. Amadeo et al. deployed a testbed as proof of concept for the

proposed framework [7]. A simulation was conducted to measure the overhead performance of IOTGUARD [17].

Demetriou et al. [31] designed a prototype and conducted an experiment to evaluate the HanGuard performance.

In [96], an experiment was conducted to test the performance of voice-print veriication. The efectiveness of

Expat [113] was evaluated using its own testbed and dataset. An experiment was presented [75] to identify

vulnerabilities by extracting the execution log and Wi-Fi traic from the implementation of smart-home systems.

As a proof-of-concept, Fernandes et al. [36] developed an empirical analysis to exploit a lawed design by building

the SmartApps dataset and conducting a survey with 22 participants. As a proof of concept, SERENIoT simulated

network compatibility across numerous days on Amazon AWS [109]. An attribute-smart contract-based edge

scheme [89] was simulated to demonstrate its feasibility and eiciency in authenticating smart-home users and

devices. As a proof of concept, Raferty et al. proposed a use case illustrating the coordination of threat-response

decisions between operational availability and security risk agents [92]. SceFHome was simulated in [45] to

calculate communication and processing expenses. Security analysis proved the security of the proposed scheme

[67]. Hu et al. conducted proof-of-concept studies to assess the security of smart home assistant applications [52].

A prototype was created to test the privacy, security, and performance of Sovereign [120] and evaluate the

network performance of Hestia [43]. The HoMonit prototype was created by Zhang et al. to test the eicacy and

eiciency of the suggested system [119]. In [4], the software deined networking (SDN)-based framework was

prototyped by countering malicious network monitoring and ARP spooing. Contexlot developed a prototype [56]

on a dataset compromising 25 SmartApps for 22 attacks. The suggested network-centric method was prototyped

to demonstrate its eicacy in protecting multiple smart-home devices deployed in the laboratory [104]. Ding et

al. [32] implemented a prototype of over 185 oicial SmartThings applications. A prototype was developed to

evaluate the eicacy of the network-intrusion detection system in a smart-home network [88]. In [9], a prototype

was designed for a context-based authentication system to evaluate its lexibility. Lastdrager et al. implemented a

prototype for the SPIN platform in their laboratory [69].

Figure 8 shows that the most common goal was proof of concept (10 publications), followed by system

performance (eight publications). Feasibility, eicacy, and other goals were combined to form 12 studies. The

terminology for evaluation methods varied signiicantly. Figure 9 presents an overview of the eight methods used.

The most stated evaluation type was "prototype" with 11 publications. The second method was "Experiment." This

was followed by "simulation experiment" and "case study" with ive and four papers, respectively. Notably, the

"analysis" method was used in three papers. However, the least-popular method were "testbed," "demonstrator,"

and "use case."

6.2 Evaluation Factors

A variety of criteria should be considered when evaluating methods. The six variables afecting the evaluation

are discussed in this subsection.

6.2.1 Devices. Smart home environments are equipped with an assortment of smart devices that provide comfort

to the occupants of the home. By the end of this decade, the number of smart devices in our daily lives is expected

to be in the order of billions [100]. Accordingly, access control for multiple-devices is considered a daunting
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Table 6. Evaluation strategy.

Reference Evaluation method Evaluation goal Location Duration Data type

[29] Case study. To assess the relevance, advantages, and limitations.

[72] Case study. System performance for a large-scale smart space.

[101] Case study. Efectiveness and performance overhead. User demands.

[102] Testbed. The efectiveness and feasibility of system. 15 days. Benign daily activities

dataset (85,000 events).

[74] Case studies. To ind security issues.

[68] Simulation experiment. The study evaluates the fog-level platform’s ability to

manage context module complexity, the execution time

for context modules, especially with conlict resolution,

and the cost of dynamic context adaptability managed

by the autonomous manager, in collaboration with Or-

ange Labs.

[33] Demonstrator. Proof-of-concept.

[21] Experiment. Proof of concept. Coniguration informa-

tion.

[81] Static and run time anal-

ysis.

To measure the likelihood of true conlict between appli-

cations, number of runtime conlict, conlict resolution

capability, and a level of conlict for each app.

34 days (run-

time analysis).

Dependency informa-

tion.

[57] Experiment. To track user activity at diferent access points. Studio apart-

ment.

A month. Logical sensing param-

eters.

[107] Prototype. System performance.

[7] Experimental testbed. Proof-of-concept.

[56] Prototype. Proof-of-concept. Control and data low

attributes of the app,

and runtime values.

[32] Prototype experiment. Proof-of-concept. Inter-app trigger-action

interactions and phys-

ical channel informa-

tion.

[17] Simulation experiment. System overhead performance. Application’s informa-

tion.

[31] Experiment. System performance. Situation information.

[96] Experiment. System performance. Utterance from speaker.

[113] Experiment. System performance. Rules and policies.

[75] Experiment. To identify the vulnerabilities. Execution log and Wi-

Fi traic.

[36] Empirical analysis. Proof-of-concept.

[3] Case study. Proof-of-concept.

[104] Prototype. To demonstrate its efectiveness in safeguarding several

smart home gadgets.

Lab.

[89] Simulation experiment. Feasibility and eiciency of the system.

[69] Prototype. Lab.

[92] Use case. Proof-of-concept.

[88] Prototype. System performance.

[45] Simulation. Communication costs and computation costs perfor-

mance.

[9] Prototype. To show the lexibility of the security framework.

[67] Security analysis.

[52] Experiment. Proof-of-concept.

[120] Prototype. To assesses the privacy and security, and performance

of system.

[43] Prototype. Network performance.

[109] Simulation. Proof-of-concept. From 1 hour to

multiple days.

[119] Prototype. To evaluate the efectiveness and eiciency of the pro-

posed system.

Wireless traic.

[4] Prototype. To show the feasibility of the proposed framework.

[103] Experiment. Lab.

[94] 3 Case studies.
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challenge in smart homes. Table 7 presents an overview of the devices used in the smart-home context. For

example, 17 diferent devices were considered in Ref. [101]. A real-world smart environment can be created using

14 distinct types of commercially available sensors, devices, and controllers [102]. In [31], four devices were

selected (three actuators and one sensor) for real-world testing. The smart home in Ref. [113] was equipped with

18 devices. In [36], 132 devices that were compatible with SmartThings, called device handlers, were downloaded.

The authors used the Philips Hue light bulb and Nest smoke alarm to demonstrate the value of having IoT

protection provided by the security-management provider as a value-add service [104]. Five types of devices

were used in the implementation of smart-home environments [9]. In [119], data was collected from seven

ZigBee devices and four Z-Wave devices. In [109], a smart-home context was simulated using 53 various devices.

Additionally, 29 devices were used to simulate the smart home [17].

Table 7. Smart home devices, users and applications.

Reference Devices
Number

Devices list Users Num-
ber

Applications
Number

[101] 17 Smart home hub, smart light, smart lock, smart camera, smart thermostat,
motion sensor, door sensor, and temperature sensor.

43 10

[102] 6-24 Sensors, controllers (smartphone, tablet, and voice-controlled smart), and
devices (smart light, smart lock, etc.).

20

[31] 4 WeMo Switch and WeMo Motion, the WeMo in.sight.AC1, and My N3rd 55
[113] 18 15
[36] 132 499
[104] 2 Philips Hue light-bulb and the Nest smoke-alarm.
[9] 5 Single-board computer, wireless router, smart switch, smart light hub, smart

bulb
[119] 11 ZigBee devices and Z-Wave devices 30
[109] 53
[117] 7
[17] 29 65

6.2.2 Platforms. Various types of platforms are used in smart homes. For example, the Samsung SmartThings

platform [44] is implemented in [101], [33], [56], [119], [94], [36], [32] and [21]. It has the largest market share in

consumer IoT and supports the greatest number of open-source apps and smart home devices. Google Home

was used in [102]. Moreover, in [102], the Samsung SmartThings platform was selected for the purpose of

developing a single-platform smart-home environment in which all devices share the same access point. However,

in multi-platform smart-home systems, where the gadgets for smart homes are deployed as separate entities

and no common access point is considered during installation, Amazon Alexa, Philips Hue, LIFX smart bulbs,

and Samsung SmartThings were used. The ICasa platform [87] [68] ofers a suitable model for development,

as well as a number of tools for interfacing with heterogeneous devices, gathering and displaying contextual

data, and enabling the dynamic deployment of components and applications. The proposed multi-layer cloud

platform [107] for IoT-based smart homes consisted of a public cloud provided by Amazon EC2 and two private

smart-home cloud platforms supported by DGUT and Canbo. The ICN-iSapiens platform [7] provided real-time

services while obscuring the diversity of the IoT devices. Celik et al. evaluated their system using the SmartThings

platform and IFTTT [55] trigger-action platform [17]. The authors of [113] integrated their prototype into the

OpenHAB smart-home platform [84], which was used to the automate the interactions between smart devices.

An open-source measurement platform called SPIN [50] builds a dynamic and user-friendly data model for IoT

devices in the home network used in [69].

6.2.3 Applications. Amit et el. [101] installed ten diferent oicial SmartThings applications that control other

devices. In [31], home-area network IoT devices were connected with WiFi/Internet using 55 diferent Android
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applications. Fifteen automated applicationswere installed on a smart-home platform [113]. In [36], 499 SmartApps

were downloaded from the SmartThings app store, and a thorough examination was performed. From the

SmartThings public GitHub repository [105], 30 SmartApps were chosen, where 20 SmartApps worked with

ZigBee devices and ten connected Z-Wave devices [119]. In [17], 35 SmartThings and 30 IFTTT market-vetted

applications (65 applications) were used to evaluate smart homes. Table 7 summarizes the number of devices

used in smart-home environments in the literature.

6.2.4 Protocols. Communication protocols (ZigBee and Wi-Fi) used by Philips Hue, LIFX, and Chromecast were

analyzed to extract an end-to-end speciication for detecting security vulnerabilities [74]. To link the devices to

the hub, Tam et al. utilized message queuing telemetry transport [13]) via TCP/IP; however, Bluetooth, ZigBee,

and Z-Wave were used as the communication protocols, and the OAuth 2.0 authorization protocol [79] [47] was

used to authenticate SmartApps APIs to ensure that the Web App had access to the devices it needed [33]. In [7],

the CCN-Lite software [78] used a simple CCNx/named data networking (NDNx) protocol, which was chosen

to facilitate ICN connections between diferent boards in smart homes and used IEEE 802.11g to communicate

wirelessly with devices. In [36], the OAuth protocol was used by the client-side Web IDE and SmartThings

backends to analyze attacks. Kumar et al. [67] proposed a modiication of the IPv6 protocol and used the Diie

Hellman key-exchange protocol to secure communication in a smart-home network. In [120], a lightweight NDN

[26] protocol that safeguards data by securing device-to-device communication was implemented. Wei et al. [119]

detect misbehaving SmartApps by checking the wireless (Z-Wave and ZigBee) traic between a SmartThings

hub and devices. In [103], the issues of the universal plug-n-play protocol used by devices to communicate with

home gateways were discussed.

6.2.5 Events. An event is anything that occurs in the smart-home system that alters its state. Aegis+ [102] notiies

users of any malicious activity in real time by comparing a dataset comprising over 85,000 events collected from a

user’s daily activities with 24 diferent datasets for a total of over 15,000 events. In [72], a sequence of 160 events

was used to validate the investigation. Yunhan et al. [56] evaluated the system on a dataset compromising 283

SmartApps by injecting device events to trigger 916 events handling logic. In [36], sensitive information was not

adequately protected by the SmartThings event subsystem, which devices use to interact asynchronously with

SmartApps through events. For each IFTTT rule to be mapped to an IoT app, Celik et al. [17] extract the events

(86, 30) and actions (78, 30) from SmartThings applications and IFTTT trigger-action applets, respectively. Ref.

[119] proved that the lack of event integrity protection in the SmartThings architecture leads to event-spooing

attacks.

6.2.6 Users. Users of smart homes often share installed smart-home devices in a multi-user scenario, as a typical

house consists of multiple people (see Table 7). In [101] smart-home data were collected from 43 real-life users. In

[102], information was acquired from 20 users, and various users simultaneously conducted daily tasks. In [117],

a smart-home was prototyped with seven households, including couples, roommates, and families with children

of various ages. The needs and preferences of smart home users are deined in Refs. [117], [49], [116], and [101]

to include a ine-grained access-control system to prevent overprivileged challenges, a role-based access control

system to restrict access to devices and applications in a home setting, and location and time-based access control

for transient users in a communal setting. Automation rules aim to reconcile competing requests, and users

accept per-device roles for private rooms in a shared environment. Aegis+ [102] analyzed user activity using

a context pattern to identify concurrent operations carried out by several people and devices in a smart-home

system. The proposed bathroom-monitoring system [115] provided the users’ daily activities, personal-care

routines, and lifestyle habits as knowledge for the reasoning module. Ref. [3], explained the issues stemming

from the disclosure of behavioral patterns, such as the exchange of private information, insurance-related fraud,

and burglary.
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7 Lessons Learned

As vast amounts of data are created [25], securing communication between the cyber and physical worlds is

challenging. This requires addressing user awareness, device security, network risks, and malicious programs. In

this section, we explain why current strategies are inadequate and present the following observations based on

peer-reviewed articles.

Users. The CSGO has been suggested to help users perform security guidelines automatically [60]. Furthermore,

access-control systems that deine user roles and privileges depending on smart-home conditions are being

studied to avoid conlicting requests between users. Most current research is directed at creating whole processes

in smart-home automation, even though adding the user to the loop of operations would make the user more

aware of important faults in the system.

Devices. SDN [65] was proposed [31] to protect IoT devices. Qashlan et al. proposed a decentralization authentica-

tion scheme to secure IoT devices [89]. In [58], a security framework for smart devices was proposed to maintain

the integrity of the module codes. A risk-based permission model was proposed to classify device operations and

mitigate risks [94]. However, these methods were limited against speciic types of attacks.

Networking. In [104], a range of services was provided at the network level, such as security, taking advantage

of SDN technology. A distributed system for protecting home networks from hacked devices was presented [69].

A multi-agent collaboration model was used to represent each entity in a smart-home network as an agent to

collaboratively achieve security [92]. A modiication of the IPv6 protocol to secure smart-home IoT networks

proposed in [67]. In [120], the NDN model was used to secure device-to-device communication. Access-control

policies were enforced to reduce communication with networks [43]. Both [109] and [119] proposed detection

systems to monitor traic in a smart-home network. A network access-control framework was enforced at the

network level of a smart home [4]. As a smart-home network serves as the Internet’s primary point of contact

with the outside world, numerous security threats can be launched against it. Studies must be conducted to

combat such attacks, which are becoming increasingly frequent.

Applications. Side-channel inference [119] monitors the activities of SmartApps to discover misbehavior. In [21],

cross-app interference threats were recognized using SMT, which treated the problem as an automated theorem

problem. In [113], an SMT solver was used to verify the satisiability of the policy. Dependency detection and

resolution at installation and runtime were implemented to check for conlicts across applications [81]. Patching

was used in context-based permission systems [56] and policy-based enforcement systems [17], which increased

the performance overhead. These methods can be integrated to further improve defense accuracy.

8 Research Challenges and Directions

This section outlines four research challenges in smart-home systems identiied in our review (See Table 8):

integrating self-adaptation in smart homes, on-edge data processing, lack of adequate testbeds and evaluation,

and beyond-detection-method techniques. These areas require further exploration and the development of novel

techniques and solutions.

8.1 Self-adaptive Security

Smart devices are heterogeneous and each has a diferent set of capabilities in terms of sensing and actuation.

Smart spaces may be hacked, exposing privacy and security or rendering the entire area a hostile environment

in which ordinary tasks are impossible. Therefore, securing smart spaces can be challenging because of device

heterogeneity, continuous changes in context, and limited device resources. Self-adaptive security is crucial

for smart-home systems because it ofers real-time threat detection, lexibility in response to changing threats,

resource optimization, and a smooth user experience. Ensuring that smart homes are robust in against a constantly

shifting threat landscape helps safeguard user security and privacy. Self-adaptive security measures are becoming
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Table 8. A summary of research directions and current challenges.

Research direction Current challenges Possible Solutions

Self-adaptive security: Self-adaptive security en-
compasses a proactive and dynamic approach to
cybersecurity, enabling systems to autonomously
adjust and reconigure their security mechanisms
and countermeasures in real-time, based on evolv-
ing conditions, emerging threats, and luctuating
risk levels within the operational environment [20].

The deployment of uniied security solutions is
made more diicult by the heterogeneous nature
of the linked devices, each of which has diferent
capabilities, protocols, and vulnerabilities.

Monitor-Analyze-Plan-
Execute-Knowledge (MAPE-k)
[15] method and multi-agent
mechanism [76].

On edge security: In this approach, edge devices
are equipped with computational, storage, and
communication capabilities traditionally associated
with cloud servers [83].

Transferring data to cloud-based systems can in-
troduce signiicant latency, as the process of trans-
mitting and processing the information over the
network can be time-consuming. Moreover, rely-
ing solely on cloud infrastructure for data handling
raises concerns regarding data security and privacy.

Edge processing.

Testbeds and evaluation: It processes serve as
benchmarking tools, providing a systematic and
objective means to quantify the uniqueness, efec-
tiveness, and practical applicability of the research
contributions.

Using only theoretical models or simulations might
make it diicult to fully understand the complexi-
ties and details of real-world applications.

Real-world evaluation ap-
proach.

Cyber-physical anomaly detection: The ability
to identify when anything goes wrong or when an
unusual event occurs [93].

threat explanations remains an understudied and
largely unexplored area.

Intelligence gathering.

increasingly important as smart-home technology develops. To address this problem, smart devices should

be dynamically conigured to perform the corresponding task. The monitor-analyze-plan-execute-knowledge

(MAPE-k) [15] method and multi-agent mechanism [76] show future directions for further research to tackle

this challenge. These techniques can monitor smart-home networks and devices continually for any unusual

activity or security breaches while automating security decisions and actions, reducing the reliance on human

decision-makers who are frequently prone to error. Moreover, the MAPE-K framework has been extended to

facilitate human-machine teaming [22], thereby enabling efective collaboration and communication between

automated systems and human operators. A notable example demonstrating the incorporation of the human-

machine teaming concept can be observed in the domain of unmanned aerial systems [23] [18], where autonomous

drones and human controllers work in tandem, leveraging their respective strengths and capabilities. In addition,

ontologies (such as W3C SSN [24], W3C BOT [95], and W3C IoT-Lite [14]) were used to model contextual

information in the smart-home environment.

8.2 On-Edge Security

The computation and storage of data produced in a smart-home are saved on cloud backend servers. The large

volume of traic generated by the widespread use of mobile videos and online social-media applications has

led to the big-data concept [11]. Thus, managing big-data-driven networks in cloud environments is critical

[118]. Consequently, edge computing or fog computing [83] is an emerging technology in which edge devices

provide the capabilities of a cloud server to perform functions including communication, storage, and control.

Using edge computing is a possible direction for ensuring the security and safety of the cyber-physical system

without requiring cloud services. Edge security for smart-home systems is of paramount importance, and

represents a critical area for future work to handle the increasing amount of data generated and processed in

smart homes. Similarly, it enables devices to continue operating autonomously in the case of network failures or

disturbances. Edge systems are crucial for maintaining low latency in real-time applications, such as smart lighting

or home automation, while safeguarding the integrity and conidentiality of data. As the adoption of smart-home

technology continues to grow, further research and development in edge security is vital for addressing the unique

challenges and opportunities presented by this rapidly evolving ield. Smart-home systems can decrease the
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quantity of sensitive information communicated to remote servers or third-party services by implementing certain

data-processing and decision-making functions closer to the source [41]. The potential security beneits ofered

by edge-computing capabilities must be recognized. By performing iltering and processing operations on data

collected from nearby sources, edge devices can efectively eliminate noise, irrelevant information, and outliers

[99]. Consequently, only relevant high-quality data are transmitted to the cloud after edge processing. Enhanced

data quality optimizes the performance of analytical models and enables the development of smart-home products

and services tailored to user needs and contexts.

8.3 Testbeds and Evaluations

Researchers can compare their suggested solutions or methodologies with those that already exist owing to

testbeds and evaluations. The uniqueness and eicacy of the research are evaluated using this benchmarking.

Moreover, insights into the generalizability of the research can be gained through test beds and evaluation results.

Researchers can verify whether their indings hold true in various settings, populations, or circumstances. As

discussed in Section 6, most of the reviewed studies on smart-home security utilized prototypes, experiments, case

studies, analyses, and simulation experiments to evaluate their approaches. However, testbeds, demonstrators,

and use cases also played a minor role in evaluations. A real-world evaluation is required to achieve the most

realistic results. This is one of the most challenging issues in this ield. Therefore, smart-home security techniques

must be implemented in real scenarios. For benchmarking purposes, a real-world IoT testbed should be created

using Arduino and Raspberry Pi sensor nodes. Each sensor node has several diferent sensors and computational

capabilities. In addition, to validate the system performance, we conducted experiments using real-life datasets.

Diferent types of datasets exist based on their usage, such as IoT smart-home devices (YourThings dataset [6]

and CASAS dataset [27]), smart home applications ( [56] [119] [81] [36] [114]), and the IoT network intrusion

dataset [54]. Therefore, collecting datasets based on common cases of security use is important. The number of

data-sets is determined by the quality of each data-set and repeatability of the results.

8.4 Cyber-physical Anomaly Detection

Anomaly-detection techniques are used to signal to users that something occurred incorrectly in a smart home

[93]. The security, privacy, and safety of smart-home systems depend heavily on cyber-physical anomaly detection.

To address the changing threats and vulnerabilities, eicient anomaly-detection systems must be created and

implemented as smart-home technology continues to expand and become more complicated. This is a viable

area for further research to support the development and use of smart-home systems. However, to the best of

our knowledge, a threat explanation has not yet been investigated for cyber-physical security in smart-home

systems. As a result, a unique challenge arises in discovering and exploring incidents that take advantage of the

entire gamut of smart-home contexts. To accomplish this, intelligence gathering functionality is a promising

topic for further research. This may provide the locations of suspected cyber-physical threats by collecting more

evidence and information to detect anomalous incidents. In such cases, the system must capture infrastructure

knowledge and capabilities to improve the smart home’s understanding of potential threats. Because of the

relevance of detecting anomalous incidents in real time based on contextual information, more efort should be

given to this ield. The security, privacy, and safety of smart-home systems depend heavily on cyber-physical

anomaly detection. To address the changing threats and vulnerabilities, eicient anomaly-detection systems must

be created and implemented as smart-home technology continues to expand and become more complicated. This

is a viable area for further research to support the development and use of smart-home systems.
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9 Conclusions

CPSs play a crucial role in smartness and digitization by integrating the cyber and physical worlds. This has

resulted in the emergence of numerous applications in various ields. For example, smart homes are the primary

domain of CPS, consisting of many smart devices and applications in the interest of providing services to

maintain household comfort. Smart-home environments face many challenges in terms of their functional and

nonfunctional requirements. Numerous solutions using artiicial intelligence mechanisms have been proposed.

These methods have limitations, including concentrating on a single issue rather than providing a comprehensive

solution or suggesting remedies that need to be updated. Therefore, a complete solution that develops with the

evolving vulnerabilities of smart homes is required.

In this review, we analyzed and evaluated the knowledge employed in smart homes to comprehend and

analyze their experiences. We proposed a taxonomy that deines the classiication of decision-making locations.

We presented the main countermeasures against attacks and threats in smart homes. We also discussed the

evaluations of smart homes from the past to the present. We have reviewed the security of smart homes on

diferent platforms and applications. In addition, we analyzed various aspects of the challenges of smart homes

and how current solutions overcome these limitations. Finally, we examined four research gaps related to smart

homes from a knowledge-based perspective that requires further research.
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