FEASIBILITY ON DETECTING DOOR SLAMMING TOWARDS MONITORING EARLY SIGNS OF DOMESTIC VIOLENCE

Can we use microcontrollers (such as Arduino) and machine learning to detect potential early warning signs of domestic violence?

Research Questions:

- How can we quantify whether a door is being closed aggressively or not?
- Can sensors be used to detect aggressive behaviours?
- Can we mitigate risks to the privacy of users?

Methodology

- We attached an Arduino Nano BLE 33 Sense to doors and captured 2-second audio samples of the door closing and being slammed.
- Spectrograms for slams and closes generated using Mel-Filterbank Energies (MFE).

What about the other sensors?

- The Arduino Nano BLE 33 Sense comes equipped with an Inertial Measurement Unit (IMU) and Pulse-Density Modulation (PDM) Microphone.
- IMU used to detect if the door is moving or not.
- If the IMU detects acceleration above a given threshold, then audio sampling commences.

The spectrogram shows a slamming door.

The spectrogram shows a door closing normally.

Osian Morgan, Hakan Kayan, Charith Perera: Cardiff University

What hardware and tools do we have at our disposal?

- Arduino Nano BLE 33 Sense
- A standard internal MDF door
- TensorFlow

Machine Learning

Results:

- 88.89% (with no background noise).
- in at a relative volume of 0.5 that of the sample.

• Using TensorFlow we experimented with different neural network architectures to determine which gave us the most accurate results for audio classification.

• We determined that using convolutional layers provided generally far more accurate results than using entirely dense layers. We show this in the diagram below:

Machine Learning Model

• Model can successfully differentiate between a door being closed normally versus being slammed with an accuracy of

• Accuracy declines to 87.5% when background noise is mixed