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A B S T R A C T

The rapid development in ubiquitous computing has enabled the use of microcontrollers as
edge devices. These devices are used to develop truly distributed IoT-based mechanisms where
machine learning (ML) models are utilized. However, integrating ML models to edge devices
requires an understanding of various software tools such as programming languages and
domain-specific knowledge. Anomaly detection is one of the domains where a high level of
expertise is required to achieve promising results. In this work, we present AnoML which is an
end-to-end data science pipeline that allows the integration of multiple wireless communication
protocols, anomaly detection algorithms, deployment to the edge, fog, and cloud platforms with
minimal user interaction. We facilitate the development of IoT anomaly detection mechanisms
by reducing the barriers that are formed due to the heterogeneity of an IoT environment.
The proposed pipeline supports four main phases: (i) data ingestion, (ii) model training,
(iii) model deployment, (iv) inference and maintaining. We evaluate the pipeline with two
anomaly detection datasets while comparing the efficiency of several machine learning algo-
rithms within different nodes. We also provide the source code of the developed tools which
are the main components of the pipeline.

. Introduction

Edge AI which is critical for resource-constrained environments that operates in the Internet of Things (IoT) domain where
ntelligent tasks are performed has started to become a hot topic with the arrival of Industry 4.0 [1]. It manages the interaction with
he physical world that is provided by sensors and actuators. Management of such an environment requires series of tasks (e.g., data
ollection, anomaly detection) that are operated by microcontrollers running ML models. Data-related professions (e.g., data
cientists, ML engineers) define rules/ranges and search for the best practices to increase the operability of edge mechanisms in
heir relevant scientific disciplines. Finding hidden information from big data can enhance the quality of living but it is not a
traightforward task [2].

While for data scientists, being an expert in edge-related infrastructures (e.g., programming languages, microcontrollers, sensors)
s not expected, they should be able to utilize data science pipelines which are executable workflows of data-related tasks that
utomate the desired process. Thus, we developed a reconfigurable data science pipeline based on an IoT sensing infrastructure that
tilizes open-source software to facilitate developing an interconnected anomaly detection system that runs on edge, fog, and cloud
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platforms. We define the edge as the platform where the first interaction between the cyber and physical world happens. Hence,
microcontrollers (e.g., Raspberry Pi Pico) that gather physical data are edge devices. We define fog as the platform where several
edge devices can be supervised. Hence, single-board computers (e.g., Raspberry Pi 4B) are fog devices that might act as edge devices
as well. Cloud is the platform where real-world data gathered by the edge and fog devices are progressed. We implemented our
system based on an example use case scenario to describe how to proposed system works while providing some results.

The contributions of this paper are as follows:

• We provide reconfigurable IoT sensing infrastructure that consists of two main open-source components: (i) The Edge to Cloud
Code Generator (EECG) that generates ready-to-deploy codes to enable data circulation from edge to fog. (ii) The Node-RED
package is hosted on Node-RED servers that enables accessing and processing to the edge data from anywhere that has access
to Node-RED servers while offering visualization via the graphical user interface (GUI). We also provide one Python library
and executable shell script that facilitate data training and inference phases.

• We propose a data science pipeline that interconnects edge, fog and cloud devices/services to provide end-to-end anomaly
detection system development. The pipeline contains four main stages: (i) the data collection which is provided by the
components mentioned at the first contribution point, (ii) the anomaly detection model training, (iii) model deployment to
the edge, fog, and cloud, (iv) inference, and maintaining the model based on the new data. We demonstrate how the proposed
tools are utilized during these stages.

• We provide a dataset that is generated via the utilization of proposed tool. We analyze the performance of Convolutional
Neural Network (CNN) [3], Recurrent Neural Network (RNN) [4], Isolation Forest [5] and One-class Support Vector Machines
(OC-SVM) [6] on the proposed dataset [7] and the WADI dataset [8]. We also evaluate them according to the platform (edge,
for or cloud) where the anomaly detection model is deployed via the utilization of proposed pipeline. In the edge, we only
evaluated CNN due to lack of application programming interface (API).

Structure of the Paper: This section provides a high-level understanding of what we proposed. We outlined the previous
ommercial and academic works in Section 2. Section 3 contains the architecture of an IoT anomaly detection pipeline infrastructure.
ection 4 presents details about how the data circulated and progressed within the AnoML-IoT pipeline. We demonstrate our
valuations and results in Section 5. Then, we discuss about the results in Section 6 and finally provide our conclusions in Section 7.

. Related work

In this section, we introduce the data science pipelines that are offered either by academia or commercial entities, and anomaly
etection techniques in time-series sensor data. We also analyze the capabilities of open-source platforms that facilitates data
irculation.

.1. Unsupervised anomaly detection in time series sensor data

Anomaly detection is one of the fundamental fields that utilize the machine learning (ML) model as the main component. There is
xtensive research being done in this field [9–11]. There are three types of anomalies: (i) point anomalies, (ii) contextual anomalies,
iii) collective anomalies. If the anomalies are contextual where the context is time, the time series anomaly detection models are
pplied. For example, in an environment where the weather temperature decreases at night if the temperature value generated
y the sensor acts otherwise, there is a contextual anomaly. While point anomalies are easier to detect, contextual and collective
nomaly detection requires additional tasks to identify the normal behavior of the system.

The nature of the input data is the core element that determines the efficiency of the ML model. The features of the data may
epend on several complementary terms such as labels, context, and domain. For example, if the input data do not contain any
abels that define normality, unsupervised algorithms [12] are applied, if the data is related to a certain context, context-aware [13]
ethods are selected, if the environment is industrial, because of the importance of detection time, faster models with reduced

omplexity [14] are preferred.
In an interconnected domain such as IoT, cyber–physical systems [15] are utilized to supervise the environment. These systems

bserve the behavioral changes (e.g., change in the temperature or movement) in surroundings through modules that manage
ensors [16]. They can also act as controllers if they contain actuators. In such environments, the anomaly might occur either
y independent or dependent events. If the events are independent, univariate analysis [17] is applied. For example, the behavioral
hanges in temperature, loudness, light density, and humidity can be detected via the related data only, hence require univariate
nalysis. However, changes in the angular momentum or acceleration are measured by sensors (e.g., accelerometer, gyroscope) that
enerate data per dimension. Hence, the relation between the data points should also be analyzed to detect anomalies. Then, the
ultivariate analysis [18] is applied.

While academia keeps offering new anomaly detection algorithms [19,20], most of the time these are based on the fundamental
nes [21]. Hence, for this work, we selected the following algorithms as they are the most common ones that are utilized for the
nsupervised anomaly detection in time series data and accessible via common ML programming libraries/frameworks (e.g., scikit-
earn [22], TensorFlow [23]) : (i) convolutional neural networks (CNN) [24,25], (ii) recurrent neural networks (RNN) [26], (iii)
solation forest (IF) [5], and (iv) one-class support vector machines (OC-SVM) [6]. Fig. 1 demonstrates the used algorithms in this
tudy.
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Fig. 1. Illustrates the utilized algorithms. TensorFlow also has an API [27] for decision trees, but due to having better documentation we prefer using scikit-learn
for implementing Isolation Forest.

2.2. Machine learning platforms and data science pipelines

Machine learning platforms. After showing promising results in a variety of tasks including speech recognition, image
processing, anomaly detection, and medical diagnosis, ML has taken an interest in both academic and commercial entities, hence
resulting in the creation of many open-source and proprietary ML platforms and pipelines. ML models can be generated via hand-
coding, code generators, or interpreters. Hand coding. There are many machine learning libraries available [22,23,28] that allows
user to create ML models or to deploy and evaluate ML algorithms. A person with the profession might prefer hand-coding as it offers
high customization, allows the development and employment of novel algorithms, and is easy to maintain. However, hand-coding
might be very resource-consuming, thus most of the time it is done by a group of programmers. Code generators. ML consists of many
steps (e.g., data acquisition, data pre-processing, and fitting). Rather than hand-coding all these steps, code generators [29,30] might
be utilized to facilitate the process. Due to the variety of complicated tasks, most code generators provide a specific code for a specific
task. Interpreters. One of the main challenges of ML is the portability of the generated model. Interpreters provide portability by
generating a model file that can be run on other platforms with minimal coding. TensorFlow [23] is the most common one that
offers model generation for resource-constrained platforms.

Data science pipelines. Raw data are needed to be interpreted to be utilized within data science-related tasks. If the data science
pipeline contains all the steps that are required to interpret the data from data gathering to deployment of a machine learning model,
it is called end-to-end. These end-to-end pipelines can be either manual where the user provides many inputs and sets parameters
each time before a new model is generated or automated where little to no input is taken. Due to a variety of data types, automated
pipelines put a certain set of rules (e.g., time format) for their system to accept the input data [31]. These pipelines can also be
named according to the performed tasks (e.g., anomaly detection pipeline). Now we introduce pipelines that are presented by either
industry or academia.

Azure Machine Learning Pipeline [32]. Microsoft provides an ML pipeline based on running Python scripts on the cloud while
automatically handling resource usage. Each step of the pipeline can be independently customized hence offering scalability to the
end-user. One of the practical features that Azure Machine Learning Pipeline offers is the automated dependency handling that allows
the usage of a variety of hardware and software environments. Microsoft also provides Azure Cognitive Services [33] where you
can utilize their ML pipeline and Anomaly Detector [34] service. They apply Graph Attention Network (GAN) [35] for multivariate
analysis, apply SR-CNN [31] for the univariate analysis.

Amazon Web Services (AWS) Machine Learning Pipeline [36]. Amazon provides an end-to-end ML pipeline as a service for detecting
anomalies in real-time. Inside the pipeline, there are many different services (e.g., database, data formatting) that can be utilized
for pipeline tasks. Amazon SageMaker [37] is the main service that provides anomaly detection for both univariate and multivariate
data. It allows users to either use a built-in unsupervised anomaly detection algorithm based on Random Cut Forest (RCF) [38] or
use a custom algorithm that can be deployed via a Docker image. Now we introduce the pipelines proposed by the academia.

Prado et al. [39] propose an end-to-end modular AI pipeline that allows users with less expertise to implement their AI
applications such as keyword spotting, image classification, and object detection to systems that contain embedded devices. Their
framework relies on Low Power Deep Neural Network (LPDNN) that contains an Inference Engine (LNE) that is compatible with
Caffe [40]. LNE is a code generator that facilitates the deployment to the embedded devices. The authors use FIWARE [41] for IoT
hub integration and Kurento Media server [42] for media streaming which are required to run live inference. The authors define
Raspberry Pi devices as edge and evaluate the efficiency of LPDNN compared TF Lite [43] on these devices by running benchmarks
that are included in the TF Lite repository.

Drori et al. [44] propose an automatic ML (AutoML) system that optimizes the ML pipeline according to the given dataset. Their
pipeline utilizes LSTM-RNN as a base ML algorithm. Monte Carlo Tree Search (MCTS) [45] is applied to the predictions generated by
the LSTM-RNN to evaluate the performance of the pipeline and decide on the better pipeline. They evaluate the proposed pipeline
compared to baseline stochastic gradient descent (SGD) [46] estimators from scikit-learn [22]. They claim their pipeline provides
faster run time according to its peers.

Sutton et al. [47] propose an open-source ML pipeline that receives physiological data that is used to identify anomalous
behaviors as an input in real-time. The authors try to detect Paroxysmal atrial fibrillation (PAF) by applying Probabilistic Symbolic
3
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Table 1
Comparison of AnoML-IoT with the previous works.

Related Work Topic Environment Commercial Open-source End-to-End Time-series Data Adaptability

Azure Machine Learning Pipeline [32] General General ✓ ✓ ✓

AWS Machine Learning Pipeline [36] General General ✓ ✓ ✓ ✓

Prado et al. [39] Classification IoT ✓ ✓ ✓

Sutton et al. [47] Anomaly Detection Medical ✓ ✓

Nitsche and Halbritter [49] Classification Linguistics
Shaikh et al. [50] Policy General ✓ ✓

Boovaraghavan et al. [51] Classification IoT ✓ ✓

Molinara et al. [52] Classification IoT ✓

Vinzamuri et al. [53] Anomaly Detection IoT ✓ ✓

Li et al. [54] Anomaly Detection General ✓ ✓ ✓

AnoML-IoT Anomaly Detection IoT ✓ ✓ ✓ ✓

Pattern Recognition (PSPR) to the Electrocardiogram (ECG) signals. PSPR is used for online feature extraction while they apply
random forest (RF) to classify ECG data. The proposed pipeline is based on Spark’s ML library (MLlib) [48], hence allows other
anomaly detection techniques included within MLlib.

Nitsche and Halbritter [49] propose a data science pipeline that is optimized for text classification. The authors benchmark
ifferent GPUs to evaluate the performance of their hardware setup which consists of 10 NVIDIA Quadro P6000 and the effect of
he number of GPUs on the image processing time. They apply the Naive Bayes classifier that is included in scikit-learn API and
chieve above 90% accuracy on Deutsche Presse-Agentur (dpa) dataset.

Shaikh et al. [50] focus the challenges of ensuring policy fairness within end-to-end ML pipelines. They claim the ML-based tasks
re done by engineers that have a variety of professions including data creators and future engineers. Hence, each step of the ML
ipeline might be subjected to a policy violation. The authors provide an end-to-end ML pipeline that is based on log management
o prevent these violations as manually ensuring policy fairness is highly resource-consuming.

Boovaraghavan et al. [51] propose an adaptive end-to-end ML system for IoT applications. Their pipeline is optimized for activity
ecognition-based tasks including object recognition. Authors claim that the main challenge regarding end-to-end pipeline is due to
he heterogeneity of IoT applications. Authors evaluate their pipeline with various hardware platforms and datasets while comparing
rediction time and accuracy per each machine learning technique they applied.

Molinara et al. [52] propose an end-to-end ML-based indoor air monitoring system for contaminant classification. Authors
ompare the performances of Multi Layer Perceptron (MLP) to CNN and LSTM based deep learning techniques while testing the
erformance of MLP and CNN on ESP32 MCU. They investigate the power consumption of the MCU regarding the utilized ML
echnique. They claim the proposed system is only lacked to classify alcohol and acetone due to their chemical similarities.

Vinzamuri et al. [53] propose an end-to-end context-aware anomaly detection system that requires time-series data. The proposed
ystem utilizes a semi-supervised algorithm with Sparse Gaussian Graphical Models. They benchmark the pipeline on several
ublic datasets. The authors claim semantics can improve the Gaussian Graphical Models further beyond other anomaly detection
echniques. Their ML comparison is based on F-Score as the authors mention that the proposed pipeline is promising for industrial
oT environments.

Li et al. [54] develop an end-to-end automated anomaly detection system. They utilize Apache Spark backend server to run the
uery-based operations. After the user provides a dataset, the proposed system automatically selects the most appropriate algorithm
hen applies anomaly detection. Finally, the results are shown in figures within the pipeline. They benchmark the proposed system
ased on several datasets while applying quantification analysis.

Our pipeline utilizes scikit-learn and TensorFlow for the anomaly detection while relying on TensorFlow Lite for the deployment
n the fog, TensorFlow Lite Micro for the deployment on the edge devices. Hence, it allows the lightweight implementation of
nomaly detection techniques while offering a variety of communication protocols (e.g., Bluetooth low energy (BLE)) and sensor
ypes for the inference. The Table 1 compares our pipeline with the previous works based on significant features that determine the
fficiency of the pipeline.

. The architecture of the AnoML-IoT pipeline

In this part, we present the overall architecture of our pipeline by defining main components, describing the workflows that
iffer according to application scenario, and explaining how to automate these workflows to maintain the pipeline.

.1. AnoML-IoT layers and application scenarios

IoT infrastructures should provide semantic data exchange to be considered as completely ubiquitous. Current technologies that
re utilized in IoT architectures are rapidly evolving to achieve semantic interoperability, hence causing the debate of what kind of
nfrastructure is needed for a certain task. Due to each technology has a variety of pros and cons per IoT environment, extensive
esting is required to decide on IoT elements (e.g., wireless technologies, edge/fog node types, sensors, and actuators). Building
4
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Fig. 2. Overview of the data circulation and the pipeline application scenarios based on the location of anomaly detection: (i) If the anomaly detection is done
on the cloud, the edge and fog devices only forward data, (ii) if the anomaly detection is done on the fog, the edge sends raw data to fog, then the fog might
send processed data to the cloud, (iii) if the anomaly detection is done on the edge, the processed data might be sent to fog and then to cloud. Each scenario
has its pros and cons that we introduce in Section 5. Here processed data contains information to be used to decide if the data is anomalous or not. Thus, it
might be either binary (e.g., 0 for normal data, 1 for anomalous data) or a decimal (float) as an anomaly score that varies in the range of −1 to 1. The model
in the cloud will be updated with the new normal data according to the predetermined intervals.

allows the implementation of various ML-based application scenarios including anomaly detection with minimum user (e.g., data
scientist) interaction is required. AnoML-IoT allows the implementation of a variety of application scenarios where the scenarios
are evolved around the platform that the anomaly detection is implemented. In this context, AnoML-IoT consists of three layers:

• Edge Layer : The edge layer contains edge nodes that consist of microcontrollers, sensors, and actuators. These nodes are
physically observing the IoT environment by gathering data via sensors while conducting physical operations via actuators
(e.g., the fan stops working when a certain degree is reached).

• Fog Layer : The fog layer contains fog nodes that get the data from edge nodes and process it according to the end user’s
preferences. Usually, fog nodes offer more computing power than edge nodes while allowing flexible deployment options.
Even though fog computing may be considered as an alternative to cloud computing, fog nodes can also act as an IoT gateway
between the edge nodes and the cloud. In this work, we utilize Raspberry Pi 4 as a fog device and present our results. We
believe, similar Linux-based devices can be used as fog devices instead of the Raspberry Pi for the proposed pipeline.

• Cloud Layer : The cloud layer provides services ranging from data management, storing, applying anomaly detection to
developing multi-purpose frameworks. Even though, cloud computing offers many benefits (e.g., automatic service integration,
and high accessibility), edge/fog computing is preferred where time-critical or confidential applications (e.g., industrial) are
present to reduce reliance on cloud services. While the edge and fog layer might contain standalone nodes, the cloud layer
requires interaction with other layers.

Fig. 2 summarizes the working principle of the machine learning pipeline. The anomaly detection can be done within the pipeline
on edge, fog, or cloud. The edge and fog devices also can be utilized just to forward raw data to the platform at one upper level.
The initial training requires prior data. Hence, if there is no dataset to be used for initial training, the edge and fog will send only
raw data until the cloud can generate an efficient ML model. Then the model will be deployed to edge, fog, or cloud. According
to the given intervals, the new model will replace the old model to keep the system up-to-date. Having an up-to-date ML model is
significant to prevent a decrease in efficiency that depends on the dynamic context.

3.2. The AnoML-IoT open-source tools

AnoML-IoT consists of three main tools: (i) Edge to Cloud Code Generator (ECCG), (ii) Node-RED package, (iii) python library.
Now we introduce what these tools provide, what are their functionalities, use cases, and roles within the AnoML-IoT pipeline. The
source code of the tools is published in GitLab.1

3.2.1. The Edge to Cloud Code Generator
The ECCG is a web-based code generator that generates edge code to be either used for inference or to transmit data to the fog

node. Currently, it is only compatible with Arduino IDE [55]. It has a user-friendly interface, where even the data scientist with
minimal IoT knowledge can design a basic IoT application that contains several sensors where the sensor data can be transferred
between layers. The characteristics of ECCG including the justification for design choices are given below:

1 https://gitlab.com/IOTGarage/anoml-iot-analytics.
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Fig. 3. Illustrates the main input section of the ECCG. Each input is strictly controlled for the following reasons: (i) to prevent cross-site scripting attacks, (ii)
to prevent bugs that may occur in the code due to mistyping. Each text input has a tooltip that clarifies what kind of information should be given. In addition,
placeholders demonstrate an example input.

• Currently, five sensor types are available: temperature, humidity, air quality, light, loudness. The end-user can simultaneously
select all sensors. Selected sensor data will be included within the pipeline. Justification. These five sensor types are among
the most common sensors that are utilized in IoT applications. The generated code clearly describes how the sensor data is
received, and processed, thus allowing the easy adaptation of the code for a similar type of sensor.

• Four communication protocols are available: Wi-Fi [56], Bluetooth Classic [57], BLE [58], and Zigbee [59]. The end-user can
only select one. The application also includes additional settings regarding communication protocols for advanced users.
Justification. The selected four communication protocols occupy the vast majority of the IoT market and offer a variety
of topologies (e.g., mesh, star, tree). Understanding the basics of how to establish these wireless technologies enables the
implementation of high-range IoT applications. The generated code by ECCG defines how to handle the required network
elements (e.g., MAC address, personal area network (PAN) ID). An advanced user may conveniently adapt the generated code
to be used with other IoT communication protocols that are out-of-scope of this project such as WirelessHART [60].

• The data transfer rate determines the time between two data blocks. It is in milliseconds that ranges from 30 000 to 300 000.
After copying to code the user can set the data transfer rate as desired. However, we do not recommend setting it below 30 s
as it is the time that is required for the module to initialize. Justification. Data generating time differs per sensor module.
Controlling the data transfer rate is necessary to ensure the integrity of transmitted data.

• The sensor locations are determined by the end-user. Identification (ID) number starting from 00 is given per location. The
application supports up to 99 locations. Justification. Data scientists work with comma-separated value (CSV) files, to handle the
further progressing of the data. The data in CSV files mostly in pairs as text-value where text is the identifier, and value is digital
presentation of a physical quantity. To generate such files, data is transmitted in data-serialization formats (e.g., JavaScript
Object Notation (JSON), Extensible Markup Language (XML)) supported by IoT application standards. Thus, the ECCG allows
an end-user to define location. Then, it generates a unique location ID number to be used in data transmission.

• Three microcontroller types are available: Arduino Nano 33 BLE Sense, Arduino Nano RP2040 Connect, and Raspberry Pi Pico.
The end-user can select one of the microcontrollers to obtain the edge node ID number to be used to identify the microcontroller
types when needed. Justification. The ECCG supports the top three microcontrollers that are officially supported by TensorFlow
Lite for Microcontrollers (TFLM) [61]. Supporting a variety of microcontrollers allows users to design a heterogeneous IoT
application, where the environment benefits from different features of these devices (e.g., RAM, flash memory).

• The ECCG allows sending lowest, mean, or highest sensor data which are generated during the time interval determined by
the user. Justification. In some cases, the normal range might just be determined by lower or upper limits. Hence, we allow
the user to decide on the data to be sent. If the user selects mean, the mean of the number of data points generated by the
sensor during the predetermined time interval will be sent.

The user interface of the ECCG facilitates usability by navigating users via input controls. Fig. 3 demonstrates the main input
section of the code generator while the example inputs are given. Minimalist design is preferred to assist a data scientist with no
prior IoT knowledge. Thus inputs are controlled, tooltips are included, and example inputs are given as placeholders.

After the inputs are given, the final step is clicking on the ‘‘Generate Code’’ button. The ECCG will output the followings:
(i) the edge code that is ready to be deployed to the microcontroller via Arduino IDE, (ii) the Python3 script that should be run
on the fog device, (iii) the Linux commands to be run via terminal, (iv) example Node-RED setup. The outputs differ according
to the given inputs. For example, the Linux commands are only required if the Bluetooth Classic will be used within the pipeline.
The Fig. 4 illustrates how the generated code blocks are presented. Two main buttons are included for each code block: the first
button generates the code shown in the pre-scrollable division to let a data scientist examine the codes before further progression,
the second button copies the code without breaking the format to prevent possible errors. The user manually uploads the code into
the microcontroller.

We assume the following scenario: the edge node (micro-controller) gathers physically observed data via sensors and sends it to
a fog node(a single-board computer (SBC)) where the data is either processed or forwarded to the cloud via Node-RED. Thus, the
ECCG consists of three main sections: (i) the input field where the end-user determines the basic characteristics of the desired IoT
application, (ii) the transmitter field where the edge node code is generated for a microcontroller, and (iii) the receiver field where
6
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Fig. 4. Illustrates the generated code block and the example Node-RED setup. In the example scenario, Raspberry Pi Pico is selected as an edge node/transmitter.
The generated transmitter code is written in C++ and should be deployed via Arduino IDE. The Raspberry Pi 4B is acting as a fog node/receiver.

3.2.2. The Node-RED package
Node-RED [62] is an open-source browser-based workflow development tool that runs on Node.js [63] based runtime. We can

develop workflows via utilizing drag-and-drop nodes on resource-constraint environments such as Raspberry Pi thanks to the non-
blocking nature of Node.js. Hence, we use Node-RED on the fog device to develop and control the workflows within the AnoML-IoT
pipeline. Even though Node-RED contains many open-source packages developed for the IoT networks, we could not find any up-to-
date package that provides the development of Bluetooth Low Energy (BLE) modules while offering customization choices. Hence,
we developed and published our package under the name of ‘‘node-red-contrib-ble-sense’’. The package contains the following nodes:

• BLE Scanner. BLE devices can operate in four different roles: broadcaster, observer, central, and peripheral. The task of the
BLE Scanner node is to scan for the advertising BLE peripherals. It can specifically search for a local name and output one of
the followings: whole peripheral as an object, MAC address, and advertisement data. So, the user can use this node either to
discover the MAC address of the target BLE peripheral or to get the advertisement data.

• BLE Connect. This node establishes a BLE connection with the target peripheral device. While one peripheral device can only
be connected to one central, central devices can manage multiple peripherals. Hence, our pipeline allows the deployment of
multiple edge devices via BLE while the maximum number of peripherals that can be connected depends on the system-on-a-
chip (SoC) of the microcontroller. For example, the Arduino Nano 33 BLE Sense [64] SoC nRF52840 [65] supports up to 20
parallel connections.

3.2.3. The AnoML.py and SetupAnoML.sh
AnoML.py. Library of functions in python which can support most of the tasks in developing ML models with various types

of normalization and data points. Generating different models for the cloud, fog and edge platforms using various normalization
methods and data points is a labor-intensive task. Evaluating different models for unsupervised ML when there is a small amount
of anomalous data is also another challenge. Our Python library supports data preprocessing to generating ready to deploy ML
models for the cloud, fog, and edge for unsupervised ML. It also provides performance visualization for each data point while
7
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Table 2
The specifications of the Edge to Cloud Code Generator.

Main inputs

Sensor types

Temperature
Humidity
Loudness
Light
Air Quality

Communication protocols
Wi-Fi
Bluetooth Classic
BLE
Zigbee

Edge node types
Arduino Nano 33 BLE Sense
Arduino Nano RP2040 Connect
Raspberry Pi Pico

Edge node identifiers Edge Node Location
Edge Node ID Number

Advanced inputs

Wi-Fi

Service Set Identifier (SSID)
Password
Host IP Address
Host Port

Bluetooth & BLE
*MAC Address
Module Name
Module PIN

Zigbee
PAN ID
Destination Address High
Destination Address Low

Generated outputs

Node-RED example setup
Node Settings
Workspace Design
Example Functions

Transmitter code Arduino Scripts
Python Scripts

Receiver code JavaScript Function Nodes
Python Scripts

*Among advanced inputs, only the MAC address is obligatory. The default options that are included in the code
are explained via comments in detail.

including normalization techniques which helps to select the most efficient model. The proposed library provides data cleaning,
normalization, reduction, scaler, and visualization functions before feeding into machine learning models. The library also provides
various functions that allow training and testing. The inference part of the library provides functions to evaluate different machine
learning models generated using our library at both fog and cloud platforms so the performance of the platforms can be compared.

SetupAnoML.sh. It acts as an installer to prepare both fog and cloud platforms for action. It installs correct versions of necessary
packages and libraries required to run inference. Once the prerequisites are handled, it can then download, install and configure
packages such as Node-RED and TensorFlow runtime. Also, it sets our custom-developed services to listen on web ports to order to
allow microcontrollers to interact with fog devices and fog devices to interact with the cloud platform. The script can be configured
to download files and configurations either from Google Drive or a local/remote FTP Server. Users also can manually download,
install and configure all prerequisite requirements and model files if it is desired.

4. The data circulation

The nature of the input data shapes the characteristics of the data science pipeline. Hence, gathering raw data is the first step in
this kind of pipeline. In the IoT environment, the sensors generate a variety of data in various formats. While most of the temperature
sensors generate data in floating-point numbers (floats) to provide more accuracy, the light sensors that measure light density usually
provide data in integer. This is significant for two main reasons: (i) each data type occupies memory in different sizes, (ii) there
might be different regulations [66,67] according to the application domain for certain data types such as floats. Hence, the memory
usage should be optimized for microcontrollers that have very limited memory. The memory usage might also differ according to
the microcontroller architecture. For instance, while Arduino Uno [68] stores int values in two bytes, Arduino Due [69] stores int
values in four bytes. The data circulation within the AnoML-IoT pipeline consist of four main steps: (i) data ingestion, (ii) data
training, (iii) model deployment, (iv) inference and maintaining.

4.1. Data ingestion

Data ingestion is the first step of all kinds of data science pipelines unless the user already has a ready-to-deploy ML model. In
our pipeline, the ECCG is the main tool that utilizes the data ingestion process. Fig. 3 illustrates the choices offered by the ECCG.
8
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Fig. 5. Illustrates data ingestion phase. The data preprocessing can be done on all platforms. However, due to the limited computing power of edge and fog
devices, we prefer to utilize the cloud. In addition, if more than one edge device is connected to the fog device, data preprocessing can be done on the fog
device to identify the edge devices.

The user can select among the offered choices to obtain a generated code. The generated code can be copied without disrupting the
format. Multiple communication protocols and Node-RED example that demonstrates how to receive data via fog device are also
provided.

What the ECCG generates is an example edge code. Besides, in our setup, we use Grove sensors and shields [70] while utilizing
Raspberry Pi 4B as a fog device. The IoT environment is very heterogeneous hence, the user might have or want to use different
sensors, microcontrollers, or fog devices. The generated code by the ECCG should require minimal editing even when this is the
case as we also provide instructions via comments for the exact lines within the code that might require editing due to individual
preferences. If needed, the user can edit the generated code after copying it from the ECCG to Arduino IDE. Then, the code can
be uploaded to a microcontroller. To complete these tasks the user needs a computer that can access the internet and run Arduino
IDE. So, the tasks of copying the code and uploading it to a microcontroller are handled manually. Fig. 5 demonstrates the data
ingestion process.

4.2. Model training

Model training can be done before ingestion if the user already has a training dataset. Otherwise, the user should follow the steps
mentioned in the data ingestion phase. The AnoML.py library contains all the required functions that are needed to generate a ML
model. Uploading the dataset to a cloud platform is handled manually. After uploading the dataset, the user should preprocess the
data to convert to an appropriate format for the ML algorithms. Then, the ML models are generated based on the user preferences.
User can generate multiple ML models at the same time. Here, we facilitate the model training by providing user a python library
that is capable of preprocessing the time series data and generating multiple ML models based on given parameters with only a few
line of codes. The required time depends on the capabilities of a cloud platform that is used during the training. The user should
decide on the followings: (i) the size of the training dataset, (ii) the algorithm specific parameters (e.g., contamination factor for
Isolation Forest). Fig. 6 illustrates the model training phase.

4.3. Model deployment

The next step after training the model is model deployment. Here we provide an executable shell script SetupAnoML.sh that
facilitates the model deployment phase by automating several key tasks. The user should provide the following inputs to the script:
(i) the platform (edge or cloud) where the anomaly detection technique will be deployed, (ii) the details of the place where the
model is stored (e.g., server, username, password, and port names for an FTP server, Google Drive token or Google Drive). After these
inputs are given, the script will automatically download, install, and configure all the required software packages (e.g., libraries,
models, configurations). Then the script automatically will deploy the models to cloud, fog, or both cloud and fog platforms. The
user can deploy multiple models at the same time to different platforms. Fig. 7 demonstrates the model deployment process.

4.4. Inference and maintaining

Successful deployment results in inferring all models on each type of platform. We developed an end-to-end pipeline which allows
a user to generate ML models for anomaly detection from sensor data at all platforms. We developed a performance monitor which
can present visualization of performance and accuracy of all type platforms, ML models, data-points and normalization/reduction
techniques. Maintenance of data is a key aspect for evolution, we recommend that user should make it a practice to visualize
performance comparison as a process of decision making in order to enhance performance and accuracy on all platforms.
9
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Fig. 6. Demonstrates the model training phase. Currently, the built-in algorithms within the AnoML.py are RNN, CNN, isolation forest, and One-class SVM.
Multiple datasets can be utilized at the same. The storage place of these models depends on the preferences of the user. During our evaluation we used Google
Drive [71] to store our models as it can be easily integrated into Google Colab [72]. Another option would be running an FTP server. The user also can utilize
both at the same time.

Fig. 7. Illustrates the model deployment phase. SetupAnoML is an executable Linux shell script that does the followings in order: (i) fetches generated ML
models from Google Drive or FTP server, (ii) installs required libraries and packages, (iii) deploys models over HTTP. The deployment to edge should be handled
manually. We are considering to provide automated edge ML deployment function via over-the-air (OTA) transmission in the future versions of AnoML-IoT.

5. Evaluation

In this section, we present the evaluations that are done to measure the efficiency of the pipeline with various configurations
enabled. A data science pipeline evaluation is not a trivial task if the environment is heterogeneous such as IoT. Fig. 8 demonstrates
possible scenarios available within our pipeline where different sensors and wireless communication protocols are used.

5.1. Wireless protocol comparison

The decision on the wireless protocol selection depends on the application domain as each protocol has its benefits and
disadvantages. There are several important features to be considered when designing an anomaly detection pipeline for the IoT
environments:

• Latency. The time that takes for one network package to be transmitted from the transmitting endpoint to the receiving
endpoint. Latency optimization is very significant to achieve near real-time processing and inference. It is one of the significant
features that determine the anomaly detection time. Low latency is aimed for the applications (e.g., industrial) where the
anomaly detection time is critical [73].

• Power consumption. IoT is a resource-constraint environment, hence power consumption is one of the significant features to
be considered.

• Network Topology. The data circulation and the system design depend on the network topology. While there are many
topologies (e.g., star, mesh, ring) offered by the current communication protocols, the mesh, and star networks are the most
common ones that are established in IoT environments.

Table 3 compares the wireless communication protocols utilized in the proposed pipeline based on the aforementioned features.
We measured the latency by taking the mean of the passed time for the 1000 transmitted packages. Edge and fog devices were
placed next to each other during the tests hence there was no physical barrier between the devices. No packet drop is observed.
10
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Fig. 8. Illustrates the possible scenarios that can be generated within the AnoML-IoT pipeline. We allow the use of various topologies, wireless communication
protocols, and execution of use case scenarios shaped around the decision of anomaly detection platform.

Table 3
Wireless protocol comparison.

Latency (ms) Power consumption Topology*

Edge to Edge Edge to Fog Fog to Fog Fog to Cloud

Wi-Fi 18.24 14.566 17.25 21.23 High Star
Bluetooth Classic 195.13 171.15 187.15 NA Medium Point-to-Point
BLE 11.23 13.45 13.21 NA Low Mesh
Zigbee 18.56 16.66 14.56 NA Low Mesh

NA: Not Applicable. ⋆: The most common topology is given.

While we observed similar latency for the BLE, Wi-Fi, and Zigbee, the Bluetooth Classic had the highest latency. However, it is
challenging to have a conclusion as many factors that might affect the latency. Hence, to get the most realistic results, the tests
should run in a real environment where anomaly detection takes place.

5.2. Dataset and testbed

Realistic datasets and testbeds are required to achieve the most promising results. To evaluate the efficiency of the pipeline, we
built a testbed that contains components that are low-cost and accessible to most of the IoT community. When designing the IoT
testbed, the sensor selection is the initial task that shapes the main futures of the testbed. In cyber–physical environments, there
are several behaviors (e.g., temperature, noise, humidity) that can be considered as common. Hence, we observe these common
behaviors via our testbed and generate a dataset. Table 4 demonstrates the components utilized during the evaluation.

We recorded the temperature, humidity, light, loudness, air quality data for around two days. We observed the data at the
beginning to form an initial opinion about physical behavioral changes in the test environment. We realized the only temperature
and humidity sensors are working as expected and let us creating anomalous behaviors. Hence, we only utilize these two data
during the evaluation. Fig. 9 provides visualization of the generated dataset. Arduino Nano RP2040 Connect, Grove sensors, and
Putty is used to generate the dataset which is published on Kaggle [7] where more details are also provided regarding the testing
environment. In addition, we utilize the WADI [8] dataset during the evaluation to analyze how the key ML parameters such
as accuracy, F1-score, and prediction time differ according to the ML platform. The dataset contains data from 123 sensors and
actuators from a water distribution testbed that had non-stop run for 16 days while being attacked during the last two days. Table 5
demonstrates the differences between two utilized datasets. By using these datasets, we also evaluate the relationship between the
power consumption and data volume.
11
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Table 4
Testbed components.

Sensors

Grove — Temperature & Humidity Sensor (High-Accuracy & Mini) v1.0
Grove — Light Sensor
Grove — Loudness Sensor
Grove — Air Quality Sensor v1.3
Grove — UART Wifi V2
Digi XBee 3 Zigbee 3 RF Module

Microcontrollers
Arduino Nano 33 BLE Sense
Raspberry Pi Pico
Arduino Nano RP2040 Connect

Shields
Grove — Bee Socket
Grove Shield for Pi Pico V1.0
Arduino Tiny Machine Learning Shield

Single-board Computer Raspberry Pi 4 Model B

Software Tools

Putty
Raspberry Pi Imager
Node-RED
Arduino IDE 1.8.15
Visual Studio Code
Google Colab

Fig. 9. Demonstrates the behavior per data type. The controlled anomalies for temperature and humidity data are identifiable. The anomalies in temperature
and humidity are created via hair dryer. The air quality, light, and loudness can be considered as faulty due to not responding to our anomaly creation attempts.
There might be two reasons for the occurrence of faulty data: (i) the sensors are cheap quality, (ii) these sensors are designed for the AVR [74] architecture.
However, during the evaluation we used ARM-based microcontrollers [75].

Table 5
Comparison of datasets.

Features WADI [8] AnoML [7]

Amount of Data 122,543,744 45,906
Number of Rows 957,374 6,559
Number of Columns 129 7
Number of Sensors & Actuators 123 5
Time-series ✓ ✓

Labeled ✓ ✓

File size 588,906 KB 265 KB
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e Scaling/Reduction time (s) Model size (KB)

Cloud Fog Cloud Fog Cloud

5 0.464895 6.88913 1.416631 34.64844 291.4189
3 0.839623 67.18984 23.71106 34.60938 291.0166
3 0.826653 72.07326 21.63906 34.64844 291.4189
3 0.241923 1.433161 0.481541 397203.7 1191798
8 0.004278 NA NA 397194.2 1191799
2 0.387624 69.34095 34.05004 34.60938 291.0166
9 0.856599 0.814415 0.790764 397203.6 1191796
9 0.963659 20.04371 3.039728 34.64844 291.4189

1 0.243241 6.911079 1.273132 797.8203 4045.537
1 0.584251 67.16076 22.99305 797.8047 4042.888
8 0.815708 71.88432 19.5469 797.8164 4044.854
9 0.697107 69.21164 31.53431 797.8125 4044.202
6 0.594282 20.04073 3.640271 797.8203 4045.537

0.223411 1.330966 0.328342 1414.535 10386.43
8 0.004205 NA NA 1410.465 10386.67
4 0.792754 3.304777 1.005414 1414.512 10378.48

4 0.823864 6.88913 1.416631 56.62305 56.62305
6 0.896536 67.18984 23.71106 50.1582 50.1582
2 0.827282 72.07326 21.63906 8.673828 8.673828

0 1.433161 0.481541 407.5889 407.5889
0 NA NA 395.542 395.542

4 0.889524 0.814415 0.790764 1442.616 1442.616
8 0.912038 69.34095 34.05004 10.2168 10.2168
8 0.880708 20.04371 3.039728 92.62793 92.62793

0.8330 6.88913 1.416631 962.10 962.10
0.8364 67.18984 23.71106 775.20 775.20
0.8317 72.07326 21.63906 634.68 634.68
0.9124 1.433161 0.481541 952.58 952.58
0.9016 133.64 133.64 NA NA
0.9016 0.814415 0.790764 944.20 944.20
0.8247 69.34095 34.05004 761.20 761.20
0.8250 20.04371 3.039728 765.32 765.32

st. AE: Autoencoder. TF: TensorFlow. SK: scikit-learn.
Table 6
Evaluation results of WADI dataset.

Model details Inference time (ms) AUC Accuracy Recall Precision F1-Scor

Algorithm SR API Fog Cloud Fog Cloud Fog Cloud Fog Cloud Fog Cloud Fog

CNN-AE

Average TF 1.01413 23.3021 0.418136 0.418136 0.323962 0.323962 0.311666 0.311666 0.91451 0.91451 0.46489
Kurtosis TF 0.995147 24.0796 0.519019 0.519019 0.728089 0.728089 0.755389 0.755389 0.945001 0.945001 0.83962
MAD TF 1.025978 24.03 0.448848 0.448848 0.7072 0.7072 0.740935 0.740935 0.934799 0.934799 0.82665
MM TF 440.2933 96.6556 0.498538 0.498538 0.18035 0.18035 0.138802 0.138802 0.941108 0.941108 0.24192
NS TF 440 103.3094 0.5 0.50022 0.059669 0.059669 0.002144 0.002144 0.942253 0.953552 0.00427
Skew TF 1.001088 24.6464 0.361076 0.361073 0.261203 0.261197 0.248162 0.248156 0.885031 0.885028 0.38763
SS TF 440 106.2 0.699918 0.699918 0.758349 0.758349 0.765979 0.765979 0.971539 0.971539 0.85659
StDev TF 1.051563 25.3799 0.497397 0.497397 0.929901 0.929901 0.986375 0.986375 0.941966 0.941966 0.96365

RNN

Average TF 8.164231 29.9278 0.431887 0.431887 0.174428 0.174428 0.140811 0.140811 0.892397 0.892397 0.24324
Kurtosis TF 8.020618 30.07291 0.515931 0.515931 0.433345 0.433345 0.422561 0.422561 0.946374 0.946374 0.58425
MAD TF 8.014902 29.02 0.421892 0.421892 0.69089 0.69089 0.726014 0.726014 0.930689 0.930689 0.81570
Skew TF 7.621182 29.82979 0.448924 0.448965 0.544221 0.544209 0.556664 0.556646 0.932372 0.93238 0.69711
StDev TF 8.09226 30.83805 0.420087 0.42009 0.436152 0.436158 0.43825 0.438256 0.922818 0.922819 0.59427

RNN-AE
MM TF 18.32667 40.9852 0.470241 0.470231 0.166829 0.166811 0.127211 0.127192 0.917464 0.917453 0.22344
NS TF 17.90922 41.1471 0.5 0.500252 0.942253 0.05964 1 0.002107 0.942253 0.955432 0.97026
SS TF 18.08283 49.55683 0.699284 0.699284 0.671158 0.671158 0.667486 0.667486 0.975904 0.975904 0.79275

OC-SVM

Average SK 0.894195 0.342938 0.491203 0.491203 0.7086 0.7086 0.801859 0.801859 0.84711 0.84711 0.82386
Kurtosis SK 0.855004 0.341614 0.481406 0.481406 0.8127 0.8127 0.954818 0.954818 0.84496 0.84496 0.89653
MAD SK 0.512389 0.207312 0.500747 0.500747 0.7141 0.7141 0.805624 0.805624 0.850137 0.850137 0.82728
MM SK 0.687799 0.367881 0.5 0.5 0.1501 0.1501 0 0 1 1 0
NS SK 0.680684 0.335778 0.5 0.5 0.1501 0.1501 0 0 1 1 0
SS SK 1.314422 0.576975 0.496702 0.496702 0.8028 0.8028 0.93411 0.93411 0.849 0.849 0.88952
Skew SK 0.545252 0.189985 0.493176 0.493176 0.8383 0.8383 0.986351 0.986351 0.848138 0.848138 0.91203
StDev SK 1.13791 0.469978 0.501338 0.501338 0.7897 0.7897 0.913402 0.913402 0.850274 0.850274 0.88070

IF

Average SK 0.1884 0.2868 0.5891 0.5891 0.7152 0.7152 0.7179 0.7179 0.9921 0.9921 0.8330
Kurtosis SK 0.1884 0.2868 0.6433 0.6433 0.7205 0.7205 0.7221 0.7221 0.9936 0.9936 0.8364
MAD SK 0.1884 0.2868 0.4325 0.4325 0.7123 0.7123 0.7183 0.7183 0.9876 0.9876 0.8317
MM SK 0.1978 0.3081 0.7155 0.7155 0.8399 0.8399 0.8426 0.8426 0.9948 0.9948 0.9124
NS SK 0.1884 0.2868 0.6951 0.6951 0.8444 0.8220 0.8247 0.8247 0.9944 0.9944 0.9016
SS SK 0.2119 0.3103 0.6951 0.6951 0.8444 0.8220 0.8247 0.8247 0.9944 0.9944 0.9016
Skew SK 0.1884 0.2868 0.6415 0.6415 0.7036 0.7036 0.7049 0.7049 0.9937 0.9937 0.8247
StDev SK 0.1884 0.2868 0.5519 0.5519 0.7034 0.7034 0.7066 0.7066 0.9910 0.9910 0.8250

NA: Not Applied. MM: MinMax scaler. NS: No scaler applied. SS: Standard Scaler. MAD: Median Absolute Deviation. StDev: Standard Deviation. IF: Isolation Fore
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cision Scale time (s) Model size (KB)

e Fog Cloud Fog Cloud Edge Fog Cloud

00 0 0 0.716 0.12 19.62 3.172 80
70 0.946 0.946 0.241 0.04 19.50 3.152 80

0.72 0.72 2.487 0.8 19.52 3.156 80
1 1 2.425 0.57 19.50 3.152 80
0.972 0.972 2.558 0.88 19.52 3.156 80
Table 7
Evaluation results of AnoML dataset.

Model details Inference time (ms) Accuracy F1 Score AUC Recall Pre

Model SR API Edge Fog Cloud Edge Fog Cloud Edge Fog Cloud Edge Fog Cloud Edge Fog Cloud Edg

CNN

StDev TF 174.24 1.95 32.22 0.258 0.251 0.251 0.000 0 0 0.4991 0.485 0.485 0.000 0 0 0.0
Average TF 172.05 1.13 32.63 0.769 0.871 0.871 0.862 0.91 0.91 0.5738 0.867 0.867 0.979 0.876 0.876 0.7
Skew TF NA 8E−15 32.20 NA 0.475 0.475 NA 0.57 0.57 NA 0.474 0.474 NA 0.476 0.476 NA
Kurtosis TF NA 2E−07 32.04 NA 0.259 0.259 NA 0 0 NA 0.5 0.5 NA 0 0 NA
MAD TF NA 1.81 32.16 NA 0.576 0.576 NA 0.60 0.60 NA 0.702 0.702 NA 0.441 0.441 NA

NA: Not Applied. MAD: Median Absolute Deviation. StDev: Standard Deviation. IF: Isolation Forest. TF: TensorFlow.
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5.3. Anomaly detection methods

We tested the anomaly detection algorithms mentioned in Section 2 on WADI and AnoML datasets, as well as edge, fog, and cloud
latforms by applying several scaling/reduction techniques. During the evaluations, we only used the baseline version of anomaly
etection algorithms, hence we did not tune the algorithms to get better results to demonstrate the performance of baseline versions.
e evaluate the following parameters as they are the core elements that determine the efficiency of an anomaly detection algorithm.
ccuracy [76] determines the overall correct prediction ratio. Precision [77] defines how close the predictions are. Recall [77]
emonstrates how the anomaly detection algorithm is successful at detecting normal data. F1-Score [76] is an evaluation metric
hat takes class distribution into considering. It might be preferred as the main metric when false detections matter (e.g., industrial
nvironments). True positive (TP). The normal data is detected as normal. True negative (TN). The anomalous data is detected as
nomalous. False positive (FP). The normal data is detected as anomalous. False negative (FN). The anomalous data is detected as
ormal. The following equations demonstrate how these parameters are calculated:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

The TensorFlow has three different APIs. The main API (TensorFlow) contains all the available methods and utilizes high-level
PI Keras [78] to build neural networks. TensorFlow Lite [43] which is the lightweight version of TensorFlow that is specifically
esigned for mobile/IoT devices is generated via the main TensorFlow API. TensorFlow Lite for Microcontrollers [79] only allows
subset of TensorFlow operations to be run on 32-bit microcontrollers. Hence, currently only CNN is supported. TensorFlow Lite
odels are converted into micro models via TensorFlow Lite converter Python API [80]. Then, inference is possible at the edge.

Tables 6 and 7 demonstrates the results of anomaly detection tests. We see that baseline CNN at the edge achieves 77% accuracy
nd 86% F1-score. We did not observe any significant differences regarding accuracy and F1-Score. We also see those reduction
ethods help to reduce the inference time. If we compare scikit-learn methods and TensorFlow methods, we see that scikit-learn
erforms better when there is more computing power, but TensorFlow might generate better results on fog rather than the cloud.
f we use CNN-AE, we see that the accuracy is higher when the standard deviation is applied, but for one-class SVM, we see that
kew performs better than the standard deviation. Also, we see that the TF Lite models are significantly less in size than TF models.
uring the evaluation of the Isolation Forest, the whole dataset must be fit at once, due to nature algorithm. The Raspberry Pi 4B
ith 4 GB RAM fails due to high RAM usage that occurs because of fitting the whole dataset at once. Hence, we utilized the 64-bit
GB version of Raspberry Pi to evaluate the performance of Isolation Forest.

. Lessons learned

IoT infrastructures are expanding thanks to the benefits of ubiquitous computing. The rapid developments in lightweight
dge mechanisms made them desirable for labor-intensive tasks such as anomaly detection. The increasing variety of 32-bit
icrocontrollers allows us to choose a specific device with desired features (e.g., relatively high RAM) that can run ML algorithms.

n the edge environment where these microcontrollers are utilized, while ML-based tasks such as keyword spotting, natural language
rocessing, image processing have proven to be promising, anomaly detection is still in a very early phase [81]. Machine learning
ipelines are the key elements that let us evaluate these edge ML algorithms. Thus, we develop an end-to-end ML pipeline that
acilities developing anomaly detection systems where the detection can be done on different layers (edge, fog, and cloud). We
ake the following observations based on our findings: (i) lack of complete multi-protocol edge anomaly detection frameworks,

ii) the lack of control over converted ML models, (iii) there is a lack of sensor data terminology, (iv) manufacturers/developers
rovide platform-specific support, (vi) there is lack of support for multi-language/protocol development frameworks, (vii) automated
s actually not automated.
Lack of complete multi-protocol edge anomaly detection frameworks. The two tasks that are executed within anomaly detection

ipelines are: (i) data gathering/ingestion, (ii) anomaly detection model development. While these tasks are different by nature,
hey are essential to implement a complete IoT anomaly detection mechanism. During the evaluations, we see that the required
ools are very diverse and no ML framework offers a complete solution. For data ingestion, flexibility and scalability are the most
esired features. Hence, microcontrollers are the primary elements that are deployed in IoT environments to gather data. Due to
he resource constraints of these environments, we need low power-consuming communication protocols. This is one of the main
easons that why BLE [58] is invented. In the edge, during the evaluations we see that there are three conditions needed for data
cquiring: (i) sensors should be compatible with the microcontroller, (ii) communication protocol libraries should be available to
stablish a network both for the edge and the fog, and (iii) configurable platform that provides visual assistance is needed. As no
ramework ensures all three conditions, we had to use tools that require different programming languages (e.g., Arduino, JavaScript,
ython).
The lack of control over converted ML models. TensorFlow allows us to convert the neural network models that are generated via

he main API to more lightweight models that can be deployed to edge and fog. However it offers zero control over the model
onversion. During the evaluations, we realized that some lite models perform better than their main peers which were unexpected
s there is a known trade-off between model accuracy and power consumption. Due to not having any control over this conversion,
he only way to compare these models is by running inference. Also, scikit-learn models do not have a lite version. Pickle [82] library
15
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Table 8
Data format.

Categories Sensor type Protocols Others
Features TemperatureHumidityAir QualityLightSoundWiFiBluetooth ClassicBLEZigbeeLocation IDSensor IDMicrocontroller ID
Identifiers TH HU AQ LI SO WF BC BL ZB Numbers Numbers Numbers
Example Data24.45 44.31 75 255 644 NA NA NA NA 01 001 1

NA: Not Applicable.

possible. This is why during the evaluations we did not observe any differences rather than inference time when running scikit-learn
models.

Lack of unified IoT sensor data terminology. In an IoT environment, the sensors generate data in a similar format. Showing such
similarities might be confusing if the data are not identified with certain terms/identifiers especially where big data are present.
Hence, we apply further processing to identify the data context. However, there is no sensor terminology that explicitly states
the sensor data format. Thus, we designed ECCG in a way that it generates a code that provides all required information such as
the location of the sensor, sensor type, and the microcontroller model. Also, another important point to consider regarding IoT
sensor data terminology is the data with floating points. While WiFi, Zigbee, and Bluetooth Classic have no issues when sending
floating-point data, BLE by nature designed to send buffer (byte array) as it provides power optimization. Hence, when sending data
over BLE we might require further indicators such as ‘‘F’’ for floats or ‘‘I’’ for integers to correctly identify the data. Table 8 presents
the data format that is generated via ECCG. We set the number IDs in different lengths to prevent possible confusion.

We evaluated our AnoML pipeline with two datasets, WADI and AnoML. WADI dataset has data from 127 different sensors, which
is not possible to be replayed on edge devices due to limited computing power. WADI dataset was only evaluated on fog and cloud.
We used a private machine with NVidia Tesla GPU and TensorFlow-GPU library version 2.4.1 for ML model training. AnoML dataset
has data from five environmental sensors but two of them (temperature and humidity) were used to build and evaluate models on
edge, fog, and cloud. We used Google Colab with GPU support to build models for the AnoML dataset with TensorFlow-GPU library
version 2.1.1. AnoML dataset was transformed using reduction techniques only, to convert it into univariate.

In terms of accuracy, F1-score, precision, recall, and Area Under Curve (AUC), there was no significant difference recorded when
comparing fog and cloud inferences in all types of models for the WADI Dataset. It was also observed that batch processing (all at
once) in TensorFlow on the cloud does not affect the efficiency of the pipeline. Fig. 10 shows the comparison of each metric for all
models for the WADI Dataset. Regarding fog and cloud, we observed a similar trend for the AnoML Dataset. However, we noticed
that edge results were comparatively less efficient.

We noticed that inference on fog takes distinctly less time as compared to inference on the cloud. But, we observed the opposite
results for CNN-AE when doing multivariate analysis where we recorded that cloud inference was faster than fog. Fig. 10(a) provides
a visual comparison between inference times of fog and cloud. We also experienced that when using batch prediction in the cloud
(all rows at once), the average prediction time was extremely faster. But, this is not applicable in the real-world scenario where
data is being streamed. Both scaling and reduction techniques were faster on cloud (using batch-prediction) when compared to fog
as seen in Fig. 10(g). Inference time trends were also identical in ML models for the AnoML dataset as fog inference time was less
than cloud inference. The fog was more than 10 times faster than cloud inference. Inference time on edge was extremely slow when
compared to fog and cloud, it was more than 100 times slower than the fog and almost 5 times slower than the cloud.

WADI Dataset is based on two sub-datasets recorded at different times, normal and attack, as we discussed that normal dataset
was used for ML model training thus we used the attack dataset for testing. The attack dataset consists of 172 800 rows which were
then converted into time-series data. As a result, the dimension of the data became (172 770, 30, 127) for scale-based and (172 770,
30, 1) for reduction-based models. Reduction-based models took exceptionally less time for training because of the univariate nature
of the data. The size-on-disk of CNN-AE scaled-based models is too big as compared to CNN-AE reduction-based models. For RNN-AE
models, the size-on-disk of reduction-based models are not significantly different from scale-based RNN models. The main reason
for this was that we used LSTM layers for RNN. The size-on-disk variation trend was identical in fog models as seen in Fig. 10(h).
We also learned that scikit-learn models maintain consistency over fog and cloud. The time-related results in the fog were always
slower due to the difference in computing power, but there was no change observed in accuracy-related metrics. The obvious reason
was that there was no platform/format conversion done for scikit-learn models.

Models for the AnoML dataset were lightweight but there was a notable difference for the fog models in cloud model size-on-
disk. We also observed that the size of edge models was significantly greater than fog models, even though these models were
converted from them. The reason was that edge models were in plain-text (hex-dump) as they were a C-array, but fog models were
flat-buffered-binary format.

7. Conclusion

The proposed system offers support to a data scientist with minimal IoT knowledge to deploy a reconfigurable IoT anomaly
detection infrastructure that utilizes a data science pipeline. The proposed framework contains: edge nodes consist of microcon-
trollers, fog nodes consist of single board computers and virtual cloud nodes. The communication between nodes is not limited
to edge node types but limited with protocol specifications (e.g., Bluetooth only allows seven slaves/servers), hence allowing the
16
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Fig. 10. WADI dataset evaluation.

implementation of different network topologies (e.g., bus, tree, and star). The system also explicitly supports the four major phases
of data processing: gathering, training, deployment, and inference. We evaluated several combinations to measure the scalability
that is offered by the proposed framework. We observed that the proposed anomaly detection pipeline reduces the required labor
for building an IoT anomaly detection system. We identified the drawbacks of the proposed system including the reasons behind
them. We believe our work encourages the future studies that aim to build open-source ML-based pipelines.

As future work, we are seeking to improve the ECCG web application by including more edge nodes, sensors, and protocol
types. In addition, we envision converting required manual processes (e.g., deploying ML model to edge, uploading training data,
deploying edge code) within the AnoML-IoT to automated.
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