
CYBERATTACKS AND COUNTERMEASURES FOR IN-VEHICLE
NETWORKS

Emad Aliwa
School of Computer Science and Informatics

Cardiff University, UK
aliwaem@cardiff.ac.uk

Omer Rana
School of Computer Science and Informatics

Cardiff University, UK
RanaOF@cardiff.ac.uk

Charith Perera
School of Computer Science and Informatics

Cardiff University, UK
PereraC@cardiff.ac.uk

Peter Burnap
School of Computer Science and Informatics

Cardiff University, UK
BurnapP@cardiff.ac.uk

April 24, 2020

ABSTRACT

As connectivity between and within vehicles increases, so does concern about safety and security.
Various automotive serial protocols are used inside vehicles such as Controller Area Network (CAN),
Local Interconnect Network (LIN) and FlexRay. CAN bus is the most used in-vehicle network
protocol to support exchange of vehicle parameters between Electronic Control Units (ECUs).
This protocol lacks security mechanisms by design and is therefore vulnerable to various attacks.
Furthermore, connectivity of vehicles has made the CAN bus not only vulnerable from within the
vehicle but also from outside. With the rise of connected cars, more entry points and interfaces have
been introduced on board vehicles, thereby also leading to a wider potential attack surface. Existing
security mechanisms focus on the use of encryption, authentication and vehicle Intrusion Detection
Systems (IDS), which operate under various constrains such as low bandwidth, small frame size (e.g.
in the CAN protocol), limited availability of computational resources and real-time sensitivity. We
survey In-Vehicle Network (IVN) attacks which have been grouped under: direct interfaces-initiated
attacks, telematics and infotainment-initiated attacks, and sensor-initiated attacks. We survey and
classify current cryptographic and IDS approaches and compare these approaches based on criteria
such as real time constrains, types of hardware used, changes in CAN bus behaviour, types of attack
mitigation and software/ hardware used to validate these approaches. We conclude with potential
mitigation strategies and research challenges for the future.

Keywords CAN bus, Cyberattacks, Cybersecurity , Intrusion Detection System, Cryptography, Connected cars

1 Introduction

In recent years, vehicles have become more connected (to other vehicles – referred to as Vehicle-2-Vehicle (V2V) and
external infrastructure – referred to as Vehicle-2-Infrastructure (V2I)) and the cyberattack surface for these vehicles
continues to increase. Cyberattacks have also become a real concern for vehicle manufacturers, especially where
services need to be supported using networks outside a vehicle. These services can include Global Positioning Systems
(GPS), On-Board Diagnostic (OBD-2) based cellular dongles and entertainment services. As a result, vehicles are now
more vulnerable to different attacks not only from inside but also from outside the vehicle. For instance, recent report
has indicated that two famous connected cars in Europe from Ford and Volkswagen are vulnerable to cyberattacks
from infotainment unit [1]. As potential cyberattacks on vehicles have widened, more vulnerabilities and entry points
have been discovered – generally grouped under: direct interfaces-initiated attacks, infotainment-initiated attacks,
telematics-initiated attacks and sensor-initiated attacks. This raises the need for better security mechanisms. Due

ar
X

iv
:2

00
4.

10
78

1v
1

 [
cs

.C
R

]
 2

2
A

pr
 2

02
0

A PREPRINT - APRIL 24, 2020

to lack of suitable security support in the Controller Area Network (CAN) protocol itself, mechanisms to secure
communications between components within a vehicle is also limited. Attacks such as CAN bus Denial of Service
(DoS) and bus injection attacks are common [2]. CAN bus security limitations have been investigated by various
researchers over both laboratory-based environments and in real vehicles. The attacks demonstrate how attackers are
able to successfully take control of various parts of a vehicle, such as brakes, lights, steering and gears [3]. Such attacks
and malicious data on the CAN bus was generated from both on-board the vehicle and at remote locations.

Serial protocols are used for in-vehicle networks to exchange parameters between Electronic Control Units (ECUs) and
sensors. These protocols lack security mechanisms by design and are thus vulnerable to various attacks. Researchers
have also shown how to attack vehicles from within a vehicle using direct interfaces and infotainment systems via
the On-Board Diagnostics port (OBD-2), USB and CD player and from outside the vehicle using medium and long
distance communication such as Wi-Fi, Bluetooth, mobile (phone) networks, and sensors signals such as keyless fob
attacks and tyre pressure monitoring system sensors. These attacks have widened the potential attack entry points
within a connected vehicle – suggesting the importance of protecting the CAN bus. This survey provides the following
contributions:

• description of in-vehicle serial bus protocols (particularly the CAN bus);

• evaluation of current cryptographic and IDS approaches used for protecting vehicular data;

• comparison and assessment of current mitigation strategies to protect vehicles against cyberattacks;

• challenges and potential future research directions for in-vehicular cybersecurity.

The rest of this paper is structured as follows: an introduction to serial data exchange protocols within a vehicle
is provided in Section 2. This material provides the context for the rest of this paper – outlining key concepts and
terminology. In Section 3 the CAN bus protocol, bus architecture along with hardware and software used inside vehicles
is described. In Section 4 we describe the connected car infrastructure, including various ECUs and sensors that can be
used inside a vehicle. In Section 5 attacks initiated using data interfaces, telematics, infotainment and sensor entry points
and how such attacks can be generated are described. In Section 6, we review security mechanisms reported in literature
to secure the CAN bus, which includes encryption, message authentication and vehicular Intrusion Detection Systems
(IDS). We evaluate existing approaches based on criteria such as real time data requirements, the types of network
infrastructure required, computational resource constrains, modifications needed for vehicular hardware, change in the
protocol behaviour, types of attacks mitigated and software/ hardware used to validate these approaches. Finally, in
section 7 we evaluate mitigation strategies mentioned in section 6 and discuss future research challenges.

2 Automotive Serial Bus Protocols

Three key protocols are used inside vehicles for data commuications: CAN, FlexRay and LIN. Figure 1 shows the serial
bus protocols used inside a vehicle. The CAN bus protocol is the most widely used to support critical functions such as
Powertrain, engine management, anti-brake system and transmission. A vehicular system is divided into four domains,
in terms of the function it performs and whether it requires real time data [4], as outlined below:

• Power train domain such as engine and transmission functions. This domain is critical and needs real time
response;

• Chassis domain such as braking system, suspension and steering which also provides real time and safety
critical functions inside the vehicle;

• Body domain for functions such as dashboard, wipers, lights, windows and seats. These functions do not
generally require real time response;

• Telematics and infotainment domain which manages the various communications, information and enter-
tainment services inside a vehicle, e.g. in-car navigation, CD/ DVD players, rear seat entertainment systems,
driving assistance and wireless interfaces.

These domains differ in terms of the functions they provide and the performance and quality of the network they require.
Based on these differences, each domain has different performance and response time requirements. For example, a
high speed CAN bus is used for real time and safety related domains inside the vehicle such as transmission sensors.
LIN and low speed CAN bus are however used for non-critical functions inside a vehicle, as they are less expensive
compared with the high speed CAN and FlexRay buses.

2

A PREPRINT - APRIL 24, 2020

Bluetooth
Wi-Fi

USB/CD/Audio
Jack

Radio GPS

Mobile
App

Integration

Telematics
and Infotainment

Domain

Braking
System
ECUs

Suspension
ECU

Steering
ECU

ECU....

Gateway OBD-II

Dashbord
ECU

Wiper
ECU

Window Car
Lifting ECU

Doors locker
ECU ..

Engine Temp
ECU

Engine Speed
ECU

Transmissions
ECU

Fuel Temp
ECU ...

Power trainChassis DomainBody Domain

-CAN High/ CAN FD
-Local Internet
Network(LIN) -FlexRay

-CAN High/ CAN FD-CAN Low

Tyre Pressure
Monitoring

System (TPSM)

Remote Control
Door Lock

Receiver (RCDL)

 Light Detection
and Ranging

LiDAR

Sensors

Cameras

Figure 1: Serial bus protocols inside a vehicle – from [5]. The figure focuses on the three most popular protocols:
Controller Area Network (CAN), Local InterConnect Network(LIN) and FlexRay.

2.1 Controller Area Network (CAN)

CAN is serial communication protocol used for real-time, safety critical functions inside road vehicles and other
controlled applications [6]. It is a multi-master protocol and most widely used inside vehicles [7]. Below are the main
characteristics of the CAN protocol:

• the maximum bitrate is 1Mbps in the classical CAN bus;
• high speed CAN bus bitrate can vary from 125kbps to 1Mbps, while low speed CAN bus bitrate from 5kbps to

125kbps;
• critical sensors can be connected to high speed CAN bus while less critical sensors can be connected to a low

speed CAN bus;
• in CAN Flexible Data rate (FD), the bitrate is up to 8 Mbps – with a payload size of 8 bytes in Classical CAN

and up to 64 bytes in CAN FD;
• CAN bus protocol provides real time access for critical sensors via the Carrier Sense Multiple Access with

Collision Avoidance and Arbitration Priority (CSMA/CA-AP) access/arbitration mechanism;
• CAN bus is implemented physically using the twisted pair cable;
• CAN bus is used in real time automotive applications such as engine management, transmission, braking

system and steering;
• CAN bus provides error detection and correction mechanisms;
• CAN XL is expected to be announced in 2020 [8], and is the third generation of CAN which provides up to

2048 bytes of data payload and bitrate of up to 10Mbps [9]. This generation of the protocols is expected to be
used with Internet Protocol (IP) based services.

As the CAN bus is the most widely used protocol inside a vehicle, a more detailed description of this protocol is
provided in Section 3.

3

A PREPRINT - APRIL 24, 2020

2.2 Local Interconnect Network (LIN)

The LIN protocol is used for low cost vehicular applications which have a low bit rate, asynchronous data requirement. It
is used for non-critical applications such as door module and air condition systems [10]. LIN is used where the reliability
and robustness of the network is not critical [11]. It is standardised in International Organization for Standardization
(ISO) 17987 series, which has been sub-divided into seven sub-standards – describing the protocol functions aligned
with the OSI layers such as physical layer, data link frame etc [10]. The LIN protocol has the following features:

• a bit rate ranging from 1kbps to 20kbps;
• single master with multiple slave nodes – with support for up to 16 nodes;
• a single physical wire to realise the bus;
• standardised as ISO standard 17987.

2.3 FlexRay

It is a protocol used for high bitrate requirements, with error detection and correction, redundancy and safety [11]. It is
used for high end applications inside vehicles such as power train and safety functions (adaptive cruise control and
active suspension) [12]. The protocol is standardised under ISO 17458 series which describes the physical layer and
data link layer characteristics [13]. The main features of the protocol are:

• A bit rate of up to 10 Mbps with half-duplex bus access;
• standardised as ISO standard 17458;
• support for fault tolerant mechanisms;
• designed to work for high speed and safety critical applications (e.g. braking-by-wire and steering-by-wire)

Since the CAN bus protocol is the most widely used, this review paper will focus on this protocol in terms of attacks,
vulnerabilities and potential countermeasures.

Table 1: Automotive serial communication protocols. The table shows Controller Area Network (CAN and CAN FD),
Local Internet Network (LIN) and FlexRay

Protocol Bit-rate Application Domain Standard
High
CAN 125Kbps to 1Mbps Real time critical applications

e.g engine and braking systems
Powertrain

and Chassis train ISO 11898

CAN
low 5kbps to 125kbps Non-critical such as doors and

windows Body Domain ISO 11898

CAN
FD Up to 10Mbps Critical real time

applications
Powertrain

and Chassis train ISO 11898

LIN 1kbps to 20 kbps Non-critical
applications Body Domain ISO 17987

FlexRay up to 10 Mbps Critical
applications

Powertrain
and Chassis ISO 17458

3 Controller Area Network (CAN)

Initial use of CAN bus within a vehicle did not consider security, as vehicles at that time were not connected to outside
networks. The CAN protocol does not have security features and is vulnerable to attacks such as frame injection and
denial of service. Nowadays vehicles are more connected, they have internal and external interfaces such as Wi-Fi,
Bluetooth and mobile (phone) networks and thus cybersecurity has become a real concern. CAN is a protocol invented
in the early 1980s by Bosch GmbH and used widely inside vehicles to send and receive data between ECUs and sensors
[14]. It was standardised in ISO 11898 series and it works as a serial bus, indicating that any node on the network (e.g.
an ECU) can use the network bus to send data via a multi-master mechanism using 2 wires [15]. This reduces the cost
of wiring compared to a point to point wiring mechanism and reduces the negative effects of external noise through its
CAN-High and CAN-Low (signal differential) transmission [14] [16]. It works on the physical and data link layers,
although it does not use Media Access Control addresses (MAC) and MAC tables to send and receive (route) frames.
Instead, it uses message ID (does not have sender or receiver addresses compared to Ethernet) and a broadcast half
duplex mechanism to transmit data over the bus. Also, it does not verify and use authentic messages as it sends data

4

A PREPRINT - APRIL 24, 2020

based on message id does not use a source address. CAN bus controller inside the vehicle connects critical parts of the
vehicle such as engine and body control modules, such as gears, speed, brakes and so on. The CAN protocol itself does
not provide message authentication and so it is vulnerable to cyberattacks such as CAN frame injections. The protocol
consists of two versions: the classical CAN protocol and CAN FD protocol (Flexible Data rate) – both protocols are
defined and standardised under ISO 11898 series [17].

3.1 Standard CAN bus Frame 2.0A

The classical CAN bus was standardised in 1993 in ISO 11898. It consists of two versions based on the message
identifier length. The standard CAN bus 2.0A has an 11-bit identifier while the extended CAN bus 2.0B has a 29-bit
identifier.

3.2 Extended CAN bus Frame 2.0B

This extended CAN bus provides a 29-bit identifier which gives more message ids, and hence a greater number of
potential nodes that can be supported. The data payload is up to 8bytes. CAN frame structure is illustrated in figure 2

SOF
1 bit

r0
1 bit

ACK
1 bit

11 bit
Id

EOF
7 bits

CRC
15 bits

DLC
4 bits

IDE
1 bit

RTR
1 bit

Data Payload
8 Bytes

SOF
1 bit

Frame
Trailer

Frame
Header EOFControl

Field
Data

Payload

SOF
1 bit

RTR
1 bit

r1
1 bit

11 bit
Id

EOF
7 bits

r0
1 bit

IDE
1 bit

SSR
1 bit

Data Payload
8 Bytes

18
bit id

ACK
1 bits

CRC
15
bits

DLC
4 bits

Standard CAN Frame

Extended CAN Frame

General Structure

Figure 2: Standard and extended Controller Area Network CAN bus frame – showing the Frame header fields, Control
fields, Data payload fields and Frame trailer

The CAN protocol frame consists of the fields shown in figure 2. A classical CAN frame [18], [14] consists of: the
arbitration field, the message identifier field and the Remote Transmission Request (RTR) bit.

1. Frame header: The frame header contains the message identifier (11-bits or 29-bits) which identifies the
priority and the content of the message. It is worth noting that a CAN bus does not provide source and
destination addresses like IP networks, instead it uses unique CAN identifier numbers in each message.

• Start of the Frame field (SOF) has a dominant value of 1.
• 11-bit identifier shows the message id which determines the priority of the message where the lowest

value means the highest priority. Also, it is used to represent the content of the message.
• 29-bit identifier – as part of the extended frame has similar structure as the standard frame except

additional fields in the frame header and control field such as the following: The frame header consists
of a base identifier (11-bits) and the extended identifier 18-bits which both provide the priority of the
frame and its content.

• Remote Transmission Request (RTR) is used to retrieve information from a node in the network.

2. Control fields The control field consists of: Identifier Extension Flag (IDE), rO and Data length Control
(DLC) flag:

• IDE Identifier Extension is used to distinguish between standard and extended frame
• r0field is a 1-bit value and reserved and it always has the recessive value of 0.
• DLC field is a 4-bit value and indicates the length of the data in the data field
• SSR Substitute Remote Request
• IDE Identifier Extension Flag is used to identify the frame as standard (dominant bit) and in the extended

frame the value is a recessive bit

5

A PREPRINT - APRIL 24, 2020

• R1 and r0 are reserved bits and they are always dominant.
3. Data field:This field contain the payload of up to 8-bytes.
4. Frame trailer: These fields are used to detect frame errors using checksum and correction mechanisms:

• CRC (Cyclic Redundancy Code) field consists of 15bits and is used for checksum error detection. [19].
• ACK or acknowledgement field is used to indicate that messages have been sent without any errors.
• EOF indicates the End of the Frame and the message sequence.
• IFS Inter Frame Space is 3bits in size and used to provide frame separation and initiate frame processing.

3.3 Controller Area Network with Flexible Data Rate (CAN FD)

CAN FD is developed to meet the needs of higher speed and more data payload size. It can provide up to 64bytes of
data payload along with up to 8Mbps of speed [20]. It comes with a standard and an extended version similar to the
classical CAN protocol. It is standardised in ISO 11898 series as well. The frame structure of the CAN FD protocol is
illustrated in figure 3.

SOF
1 bit

r0
1 bit

ACK
1 bit

11 bit
Id

EOF
7 bits

CRC
15 bits

DLC
4 bits

IDE
1 bit

RTR
1 bit

Data Payload
64 Bytes

SOF
1 bit

Frame
Trailer

Frame
Header EOFControl

Field
Data

Payload

SOF
1 bit

RTR
1 bit

r1
1 bit

11 bit
Id

EOF
7 bits

r0
1 bit

IDE
1 bit

SSR
1 bit

Data Payload
64 Bytes

18
bit id

ACK
1 bits

CRC
15
bits

DLC
4 bits

Standard CAN frame

Extended CAN frame

Figure 3: CAN FD 11- and 29-bit identifier frame structure

3.4 Frame Types of CAN bus Protocol

The CAN bus is divided into four types of frames [18]:

1. Data Frame: contains the data payload.
2. Remote Frame: used to ask for the transmission of data frame with the same identifier from another node on

the bus. The difference between this frame and the data frame is that the RTR field inside the arbitration id is
put in recessive and there is no data payload.

3. Error frame indicates that there is an error in the bus and this frame can be used by any node.
4. Overload Frame is used when a node on the bus is too busy to receive data from another node. When a CAN

node transmits frames on the bus, it will be received by all other nodes connected to the bus due to its broadcast
feature. The CAN controller board on a CAN node is responsible for handling the relevant frames. An error
frame can be raised if an error occurs when receiving data and the remote frame is raised by the node to ask
for a re-transmission of data.

The CAN standard was updated as ISO11898:2015 to include CAN FD [21]. The 11898 series describes the CAN bus
data link and physical layer functions such as described in figure 4.

3.5 Cybersecurity and Safety Standards for Vehicle Networks

Various efforts already exist to provide security and safety for vehicles, from design to production and operation. Such
efforts originate from standards organisations such as ISO, the Society of Automotive Engineering (SAE) and other
organisations. Some of the main standards for automotive cybersecurity include:

6

A PREPRINT - APRIL 24, 2020

Application Application

Representation

Session

Transport

Network

Data link

Physical

CAN Data Link Layer
-Classical CAN and

-CAN FD
-OSI 11898/1

-Bosch Specification
-CAN 2.0 A/B

-CAN traffic control
-Error and correction

CAN Physical Layer
-Bit Encoding/Decoding

-Bit Synchronisation
-Physcal Connection

-OSI 11898/2
-OSI 11898/3

CAN Application

CAN Controller
e.g - Encapsulation and

-Decapsulation
-Error Detection and

Correction
-CAN bus access

CAN Transceiver
e.g -Physcial

meduim
Connection

-Siganlling and
accessing the bus

CAN
Appliaction

Layer 2

ECU
Hardware

Layer 1

Figure 4: CAN bus protocol in OSI Model. CAN bus Hardware, Software and Standards in OSI layers

1. ISO / SAE 21448: This standard provides a guide from measurement to design, to enable the verification and
validation of services inside vehicles [22]

2. SAE J3061: Provides a guide for cyber-physical systems within vehicles, and has been provided by the
Society of Automotive Engineering [23].

3. SAE J3101 standard provides the required features to support hardware security protection for vehicular
applications [24]

4. SAE J3138 (Diagnostic Link Connector Security): A standard used for diagnostics and security purposes for
direct interfaces such as the on-board diagnostics (OBD-2) port inside a vehicle [25].

5. ISO / SAE 21434: This standard is used to support road vehicle cybersecurity engineering – expected to be
released in 2020 [26]. It is a shared effort between ISO and SAE covering security for road vehicles, in-vehicle
systems, components, software and communication with external networks and devices. This standard aims to
provide guidelines for vehicle manufacturers and suppliers from design to production phases [26].

Other efforts to secure in-vehicle network infrastructure such as E-safety Vehicle Intrusion protected Applications
(EVITA) and vehicle to infrastructure (V2I) such as Secure Vehicular Communication (SEVCOM):

1. E-safety Vehicle Intrusion Protected Applications (EVITA)(2008-2011): [27]: This project focuses on
securing in-vehicle network infrastructure from physical and remote attacks.

2. Secure Vehicular Communication (SEVCOM) (2006-2008): [28] has focused on securing V2I networks,
with an emphasis on wireless data communications that is used to transmit vehicle parameters to an outside
network or device.

3. Cooperative Vehicle-Infrastructure Systems (CVIS) (2006-2010): [29] a framework to provide V2I secu-
rity and privacy for drivers and connected vehicles.

3.6 CAN bus Network Infrastructure

The CAN protocol focuses on the physical and data link layers. Extended protocols from industry such as J1939 (for
heavy vehicles) and OBD-2 (for vehicular diagnostics) are built on top of the CAN data link and physical layers. The
CAN layer functions can be identified [18] as follows and as shown in 5:

CAN Physical Layer (CPL) focuses on transmission of the signal across the CAN bus hardware.

CAN Data Link Layer protocol (CDLL) defines the core protocol (realised using the CAN chipset) such as bit timing,
message framing, synchronisation, arbitration logic and error detection (e.g. use of CRC and ACK).

7

A PREPRINT - APRIL 24, 2020

CAN High Layer Protocols (CHLP) (Application layer Protocols) use high speed CAN to provide real time informa-
tion and diagnostic data exchange between ECUs. There are different high layer protocols in industry such as J1939 by
the Society of Automotive Engineers (SAE) and used in heavy duty vehicles [30]. The J1939 protocol uses the 29bit
version of the CAN bus protocol. Other protocols such as the protocol used with the On-Board Diagnostic (OBD-2)
port are used for vehicle diagnostic and emissions analysis.

Application

CAN Data Link Layer
Classical CAN and

CAN FD
OSI 11898/1

Bosch Specification
CAN 2.0 A/B

CAN traffic control
and Error and coorection

CAN Physical Layer
Bit

Encoding/Decoding
Bit Synchronisation
Physcal Connection

OSI 11898/2
OSI 11898/3

CAN Application

CAN Controller
e.g ENcapsulation and

Decapsulation
Error Detection and

Corrwection

CAN Transceiver
e.g Physcial meduim

Connection
Siganlling and

accessing the bus

CAN
Appliaction

Layer 2

ECU
Hardware

ECU
Hardware

Layer 1

CAN Application

CAN Controller
e.g ENcapsulation and

Decapsulation
Error Detection and

Corrwection

CAN Transceiver
e.g Physcial meduim

Connection
Siganlling and

accessing the bus

Figure 5: CAN Electronic Control Unit (ECU) hardware and software components, functions and standards

3.7 Automotive Application Layer Protocols

SAE J1939 is an application layer protocol widely used in commercial heavy vehicles such as coaches and agricultural
vehicles. It works on top of the CAN 2.0B bus with a 29-bit extended frame providing a bitrate of 250Kbps to
500Kbps [31]. It also provides a standard message format and specification which allows using components from
various manufacturers inside vehicles. Figure 6 illustrates CAN bus application layer.

3.8 Electronic Control Units (ECU)

Modern cars have around 70 ECUs which control various functions of the car, such as breaks, gears and engine
status [11]. An ECU is primarily a microprocessor which contains a CAN controller used to support data link layer
functions and a CAN transceiver used for physical layer functions such as frame delivery, error detection and correction
and other data link layer tasks [32]. Figure 5 shows CAN Electronic Control Unit (ECU) hardware and software
components, functions and standards in OSI model. Also, table 2 illustrates some ECUs which are used inside vehicular
network systems.

3.9 CAN bus communication

The CAN protocol uses a broadcast based mechanism for message exchange [33] and each node can request use of the
bus randomly. An arbitration mechanism is used to ensure priority on the bus [18], as ECUs with critical functions such
as engine, transmission and braking systems usually have higher priority to access the bus and require least broadcast
frequency [34]. Priority is based on comparing the arbitration id of requesting nodes, and the node with higher priority
is granted access to send data on the bus. Inside the vehicle, ECUs with critical functions (e.g. brakes, steering) can be
connected to a high speed CAN bus while ECUs with low importance (e.g. windows) can be connected to low speed
CAN bus [35][2]. Both CAN buses then are connected through a gateway ECU [2].

8

A PREPRINT - APRIL 24, 2020

CAN Higher Layer
Protocol
(CHLP)

CAN Data Link Layer
(CDLL)

CAN Physical Layer
(CPL)

Commercial
Protocol

J1939

CAN 2.0B
Extended CAN

frame
250-500 Kbps

Physical Meduim
Meduim interface

Signalling

On top of CAN
CDLL

J1939 Protocol
J1939/71
J1939/21

CAN Data Link Layer
CDLL

J1939/21
ISO 11989/1

CAN 2.0B (Extended
Frame)

CAN Physical Layer
J1939/11-14-15

ISO 11898/2
ISO 11898/3

Figure 6: SAE J1939 CAN Application layer protocol

ECU-3ECU-2

Resistor Resistor

ECU-1

Resistor Resistor

OBD-2
InterfaceCAN- Bridge

CAN High bus

CAN Low bus

Infotaiment TelematicsSensors

ECU-6ECU-5ECU-4

Figure 7: Two CAN buses connected to each other through a bridge – based on [36]

With this structure as outlined in figure 7, any ECU with connection to the bus, using an OBD-2 port or Bluetooth, can
sniff and inject data into both buses. These vulnerabilities have led to the development of Intrusion Detection Systems
(IDSs) and firewalls to prevent unauthorised access, as well as using cryptography methods to provide confidentiality,
integrity and authentication.

3.10 Protocol usage

The CAN bus protocol has been used in many application areas due to its simplicity and offered bitrate. The ease of
implementation, low cost and the small number of physical wires need to realise it makes it suitable for use in many
embedded system [18]. It is used inside vehicles, built environments (e.g. controlling elevators in buildings, building
energy management systems), railway applications, medical devices and aircrafts [37].

9

A PREPRINT - APRIL 24, 2020

Table 2: Some Electronic Control Units inside CAN bus Network – based on [38]
Electronic Control Unit CAN bus Connection Critical

Engine Control Module (ECM) High CAN bus X
Electronic Brake Control Module (EBCM) High CAN bus X
Transmission Control Module (TCM) High CAN bus X
Body Control Module (BCM) High and Low CAN bus ×
Telematics Module (TM) High and Low CAN bus ×
Remote Control Door Lock Receiver (RCDLR) High CAN bus X
Heating, Ventilation, Air Conditioning High CAN bus ×
Sensing and Diagnostic Module (SDM) High CAN bus X
Instrument Panel Cluster/Driver Information Center High CAN bus ×
Radio High CAN bus ×
Theft Deterrent Module (TDM) High CAN bus X

4 Connected Car Environment

Connected cars can simply mean a vehicle connected to a network and providing services such as vehicle diagnostic
parameters and GPS information to the vehicle owner. According to Juniper research, connected cars are expected to
increase to 750 million by 2023 [39]. This connectivity will be through telematics or by in-vehicle applications. Vehicles
can be connected with either aftermarket tools such as OBD-2 cellular device, GPS device used in fleet management
or hardware and software included from the vehicle Original Equipment Manufacturer (OEM). Components used in
connected cars can be classified as:

Telematics Unit: provides connectivity to the car using WiFi, Bluetooth, GPS and mobile data interfaces.

Infotainment Unit: provides the information and entertainment to the driver through a head display unit such as CD,
DVD player, USB and mobile applications integration with the head unit.

Driver assistance Unit: provides the driver and the vehicle with driving assistance hardware such as cameras and
LiDAR sensors to provide safety on the road. Also, these sensors are used to support autonomous driving. Also,
Adaptive Cruise Control and Park Assist are used for measuring parking space and auto park assistance.

Vehicle 2 X: connected cars can also provide communication to cars (V2V) and roadside infrastructure (V2I) using
wireless communication called Dedicated Short Range Communications (DSRC) which allow exchange data such
traffic conditions between cars and/or road side unit.

4.1 Connected Vehicle Interfaces and Sensors

Bluetooth provides connectivity with mobile apps hosted on devices operated by passengers. Such a service involves
pairing a mobiles phone(s) with head unit inside the vehicle [40]. This can lead to vulnerabilities from the Bluetooth
connection as legacy and vulnerable versions are still used – as described in [41][42] [40].

Wi-Fi: Connected cars provide wireless connectivity for various services, such as providing internet through Wi-Fi on
board. Wi-Fi has a number of vulnerabilities, e.g. via a Wi-Fi hotspot on a Jeep [43] and a Tesla S [44].

Cellular/phone network: modern cars can also provide mobile/phone/cellular connection which can be used to retrieve
data such as weather conditions and traffic[43]. Attacks on such networks have also been identified [40]. For example,
[43] have shown how a cellular network interface can be hacked inside a Jeep.

OBD-2 (On-Board Diagnostic) : It is a mandatory port which is used for capturing diagnostic and environmental (e.g.
emissions) data. This interface is directly connected to the vehicle’s CAN bus network and by using an aftermarket
OBD dongle and attaching it to the OBD port, it is possible to initiate various attacks such as a DoS attach which can
affect vehicle operation and driver safety [45]. Various attacks have been demonstrated using direct connection to an
OBD port and generating remote attacks using wireless OBD dongles [40]. In 2018, a remote attack on a vehicle was
initiated using a custom hardware that was connected to a CAN bus over OBD-2 port. This customised board used a
SIM card, and the attacker sent malicious SMS messages in order to inject this data into the CAN bus [46].

Global Position System (GPS): is used to provide driving assistance and positioning for drivers. Further, it is used
by fleet management to monitor vehicle location. This interface can provide an entry point for an attacker – both
for injecting and sniffing data [47]. In [43] GPS information was retrieved from the head unit of a vehicle through
unprotected 6667 port.

10

A PREPRINT - APRIL 24, 2020

Encrypted Traffic CAN bus network

Direct- Interfaces
OBD-iiSensors

InfotainmentTelematics

Encrypted
Traffic

Encrypted
Traffic

Encrypted
Traffic

Encrypted
Traffic

Internal Protection :
-Encryption
-Message Authentication
-Intrusion Detection Systems(IDS)

External Protection
-Firewall
-Access lists

-Internal and External Interfaces
-Direct and Remote attacks

Engine and Body
ECUs

-Firewall
-Access list

IDS

Figure 8: Connected Car environment with four potential entry points for data injection: Telematics, Infotainment,
Direct interfaces and Sensors. Also, security countermeasures to detect and prevent physical and remote attacks using
Cryptography, Intrusion Detection System (IDS), Firewalls and Access Control Lists.

Compact Disc (CD) player is used in the head unit for entertainment purposes. It has been shown that this unit is
directly connected to the internal data network of a vehicle, and also susceptible to cyberattacks, as described in [40].

Sensors: sensors and actuators are used inside vehicles to support various functions such as sensing engine temperature.
Physical availability attack can be initiated using signal jamming [48] to block data between the sensors and the CAN
network. In correct sensor values can also be injected into the CAN bus to modify the behaviour of the ECUs that
operate on this data. A particular type of sensors used for Tyre Pressure System Monitoring (TPSM) are connected to
each tyre to monitor pressure and send real-time data to an ECU [43]. Attack on TPSM is described in [49], where the
authors were able to perform eavesdropping attacks from 40 meters on a passing car.

LiDAR and Camera: Cameras and laser signals are used inside vehicles to provide safety and driving assistance.
These components can be manipulated by various attacks such as signal jamming. In [50], the authors performed signal
jamming attacks on LiDAR and cameras. These components are also widely used inside autonomous vehicles.

Keyless entry : Miller and Valasek [43] show how Remote Control Door Lock Receiver (RCDL) within a vehicle is
directly connected to the internal CAN bus. It receives the signal from the key fob to lock, unlock doors and trunk of
the vehicle. Keyless entry attacks were initiated to steal vehicles in many occasions, and it has been shown as the most
used attack between 2010–2019 [51]. This attack can be initiated by jamming the signal between the key fob and the
vehicle to keep the doors open while the owner of the car thinks it is closed. Also, it can be initiated by capturing the
key fob signal and redirecting it to the vehicle. For example, in [52] researchers were able to hack key fob block cipher
and perform relay signal attack, and were able to lock and unlock doors. The attacker needs to be in the range of the
key fob to be able to intercept the signal for this type of attack.

5 Vulnerability of In-Vehicle CAN bus

The intention of using a CAN bus inside a vehicle was to reduce cost, simplify installation, and improve efficiency for
real time communication. However as mentioned previously, a CAN bus has a number of security vulnerabilities [3]:

• The network is not segmented, as all nodes (ECUs) are connected to the same bus. The CAN bus protocol uses
a broadcast mechanism to transfer data, which means all nodes on the network can send and receive the same
messages.

11

A PREPRINT - APRIL 24, 2020

0

20

40

60

80

100

120

140

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Physical and Remote Attacks

Physical Remote

(a) No. of physical & remote attacks: 2010–2019 [51]

29.59

27.22

12.72
10.36

7.69

5.33
5.33

5.03
4.44 4.14

3.55 3.25

Top Attack Vectors used between
2010-2019

key less Server Mobile App OBD-II

Infotainment Sensors Wi-Fi ECU

Bluetooth Cellular Network OBD Dongles In-Vehicle Network

(b) Top attack vectors: 2010–2019 [51]

Figure 9: Vehicle Attacks: 2010–2019

• There is no security mechanisms used for authentication and thus the CAN bus is vulnerable to message
poisoning and denial of service (DoS) attacks.

• The traffic on the CAN bus is not encrypted and can be easily read through a data sniffing attack. Every ECU
connected to the bus can therefore sniff CAN frames due to the broadcast mechanism.

• An ECU can make the CAN bus in domination status using the arbitration scheme (Message ID priority
scheme) and thus prevent other ECUs from using the bus – which can lead to DoS attack.

• It is not possible to know whether an ECU has sent or received certain messages (non-repudiation).
• Access to the CAN bus network via external interfaces and connections such as OBD-2, Wi-Fi and Bluetooth

widens the potential attack surface (and entry points) [53].

There has been an increase in the number of cyberattacks on vehicles, increasing 7 times in 2019 compared to 2010,
and doubling in 2019 compared to 2018 [51] as shown in figure 9. The vulnerable points could be classified as direct,
indirect, short-range and long-range attacks [40].

The CarShark software was used within a vehicle to sniff, analyse, observe and replay the data on the CAN bus using
OBD-2 connector and then control the wheels, brakes and other ECUs and components of the vehicle [38]. This work
also reports on other entry points to the CAN bus inside the vehicle such as the audio jack, USB and Wi-Fi, and the use
of these to perform various attacks. Similarly, other attacks were performed from outside the car identifying potential
vulnerabilities [40]. Figure 9 shows potential entry points for attacking a vehicle.

Other examples include attacks on Toyota Prius 2010 [54] and Ford Escape 2012 vehicles by physically connecting to
the OBD-2 port (and CAN bus) and controlling vehicle speed, brakes and steering. Other examples include remote
attacks carried out on a Jeep Cherokee [43]. Another attack is the keyless fob attack used to forcibly unlock the doors of
a vehicle [52]. A summary of in-vehicle network based attacks includes: Table 4 identifies some of the attacks initiated

Table 3: In-Vehicle EntryPoints
CAN bus

initiated attack
Entry
Points

Physical
remote

Attack
Mechanism

Position of the
attacker

Result of
the attacks

Interfaces
Initiated
attacks

• OBD-2
• BT
• Wi-Fi

• Physical
• Remote
• Remote

• OBD-2 direct connection
• BT vulnerabilities
• WiFi on board access

• Inside/Outside
• Outside
• Outside

• Full access
• Sniffing
• Injection

Infotainment
and telematics
initiated attacks

• USB
• CD Player
• BT
• Wi-Fi
• Cellular
• GPS

• Physical
• Physical
• Remote
• Remote
• Remote
• Remote

• Direct Connection
• Direct connection
• Unauthorised access to BT
• Wi-Fi unauthorised access
• Access cellular interface
• Access GPS information

• Inside
• Inside
• Outside
• Outside
• Outside
• Outside

• Inject CAN
• Inject CAN
• Inject and sniffing
• Inject and sniffing
• inject and sniffing
• inject and sniffing

Sensor
initiated
attacks

• TPSM
• Key fob
• LiDAR

• Remote
• Remote
• Remote

• Decode and replay
• Intercept and relay
• Jamming LiDAR signals

• Outside
• Outside
• Outside

• Attack TPSM sensors
• Unlock doors
• Block driving assistance

OBD-2: On-Board Diagnostics ; BT: Bluetooth; USB: Universal Serial Bus; GPS: Global Positioning System;
TPSM: Tyre Pressure Monitoring System; LiDAR: Light Detection and Ranging.

on real vehicles and simulated environments. The table identifies entry points used, how attacks were initiated, the
position of the attacker, the outcome of the attacks and the software/ hardware test environment used.

12

A PREPRINT - APRIL 24, 2020

Table 4: Attacks on In Vehicle Networks
Authors Initiated

Attacks
Entry
Points

Position of
the Attackers

Attack
Result

Test
Environment

[38] Interfaces
Infotainment

• OBD-2
• USB
• CD Player

• Inside (Direct)
• Inside
• Inside

• CAN bus injection
• Full access • Real vehicles

[43] Interfaces • OBD-2 • Inside
• Outside

• Control brakes,
• Wheels and
• Get access to the CAN bus

• Real vehicles

[55] Interfaces • OBD-2 • Inside
• Control Window car lifting
• Warning light
• and airbag

• Parts of a vehicle
• such as
• instrument cluster,
• window car lifting
• and head unit ECUs
• CANoe simulator

[40]

Interfaces
Infotainment
Telematics

• OBD-2
• Cellular
• BT
• CD Player
• Radio

• Inside
• Outside
• Outside
• Inside
• Outside

• Get access to CAN bus
• Disable parts of the vehicle • Real vehicles

[50] Sensors • LiDAR
• Cameras

• Outside
• Outside • Signal jamming • LiDAR Hardware

• CAN software

[56] Sensors • TPSM • Outside
• Inject with
• False TPSM values
• and signal jamming

• Real vehicles

[52] Sensors • Keyfob Keyless entry system • Outside • Lock,unlock door
• and start the engine • Real vehicles

[43] Telematics • WiFi • Outside
• Unauthorised access
• Inject CAN message
• to stop the engine

• Jeep Cherokee

[44] Telematics • WiFi • Outside • Full access to CAN bus • Tesla model S
[46] Interfaces • OBD-2 Cellular Dongle • Outside • CAN bus injection • Real vehicle

5.1 Attacks against the CAN Bus

The classical CAN and CAN FD buses are vulnerable to various attacks. Once attackers have access from either inside
or outside the vehicle, they can generate various attacks on the CAN bus network such as CAN sniffing, CAN fuzzing,
CAN replay and DoS attacks. Some of the mechanisms for initiating these attacks include: CAN bus sniffing: With

Intruder
ECU-3

Resistor Resistor

ECU-2
0x001

0x002

0x000 Higher Priority ECU
Get Access to the

bus. Usuall
ECUs with Critical

Functions

ECU-1

0x0010x002

0x001

0x002

0x000

0x001

0x002

Replay CAN Traffic Captured
and stored in a log file

Inject Malicious CAN Frame
to Negativley affect time intervals

of CAN frames

Sendig False CAN frames
to disrupt parts of the vehicle by

false payload values

Resend Random captured
CAN messages and observe

Changes on the vehicle

Dump CAN traffic
in a log file for

Further analysis

Higher Frequency
Highest Priority

CAN Replay Attack CAN Injection Attack CAN Falsifying Attack CAN Fuzzing Attack CAN Sniffing Attack CAN DoS Attack

0x002

0x001

0x000

0x002

0x001

0x001

0x002

0x000

0x002

0x001

0x0020x001

0x002

0x001

0x002

0x001

0x002

0x001

0x002

0x001

0x003

Figure 10: Overview of some In Vehicle CAN bus Network (IVN) attacks

no authentication mechanisms, encryption and broadcast transmission, it is possible to sniff the data on the CAN
bus [3]. Using off the shelf OBD2 sniffer such as CANdo board, it is possible to read and analyse the data on the bus to
manipulate and generate similar messages [43]. This attack can be avoided by implementing encryption to prevent
exposing CAN frames. This attack is difficult to detect due to the passive nature of sniffing traffic. The next step is

13

A PREPRINT - APRIL 24, 2020

to reverse engineer the raw CAN messages so that they can be used to target specific parts of the vehicle. This an
important step since manufacturers tend not to publish their CAN message specification [7].

CAN bus fuzzing attack CAN bus protocol lacks authentication and data integrity checking and as a result ECUs
accept CAN messages and respond to them. This attack is used to send random CAN data frames, checking the bus and
observing changes on the instrument panel of the vehicle. This attack looks at the impact of CAN frames on the ECUs
such as observing the change in vehicle speed while injecting CAN frames [57]. It usually happens after sniffing and
analysing captured CAN messages. Also, it can be generated using a black-box, where CAN id and payload values
are generated randomly without prior knowledge of the actual CAN id used. It involves sending randomly captured
CAN frames and recording the outcome. Encryption is needed to prevent analysis of the captured data, along with
authentication to only accept CAN frames from legitimate ECUs.

CAN bus frame falsifying attack This attack is used to modify CAN message payload by inserting incorrect values.
For example, the attacker can inject a vehicle with incorrect parameter values. This type of modification attack is used
when the CAN id is known, and the intention is to provide incorrect data payload to disrupt vehicle services. This
happens due to the lack of data integrity and authentication support in the CAN bus protocol. In order to prevent this
attack, CAN bus should provide authentication to verify the source of the data before acting upon it. Usually this attack
involves a small amount of data, making it difficult to detect and monitor. To detect this attack, a system should consider
checking CAN id and data payload consistency in a time window.

CAN bus injection attack Injecting data into a CAN bus can be used to send messages at an abnormal rate [58]. The
purpose of this attack is to change frequency and amount of CAN frames on the bus, and change the sequence of
legitimate CAN frames and data payload. Since CAN bus does not provide authentication to check if the sender is
legitimate, this attack will inject the bus with abnormal CAN traffic targeting the vehicle speed. Lack of encryption also
enables arbitrary nodes to connect to the bus. The data on the bus can then be monitored to obtain the arbitration and
data field, and and generate messages to simulate events [59]. This could lead to generation of fake events that cause
parts of the vehicle to behave as required by the attacker. This attack can be prevented using authentication and integrity
mechanisms. The result of the attack can increase the broadcast frequency of certain CAN id which can be detected
through abnormal broadcast behaviour.

CAN bus DoS attack: Classical CAN and CAN FD use the same mechanism to access the medium with multi access
using the CAN id priority [5]. The nodes on the CAN bus use the arbitration field to determine the priority of the
message and which node can occupy the bus and send data. In this case, a DoS attacked can be lunched using highest
attribution id such as 0x000 to occupy the bus and make it busy by using CAN frame priority arbitration scheme and
send too many highest priority frames so that other nodes cannot use the bus [43]. Also, it can use the same CAN
message id of an existed ECU and by knowing its transmission rate, a DoS can be performed by incrementing the
frequency time. For example, if an ECU sends a message every 200 ms, the attacker can increase the frequency by
injecting the same message with higher frequency which can lead to disruption of the sensor part.

ECU impersonation: Once an attacker has access to the CAN bus network, the attacker can receive all the traffic
broadcast on the bus. With a focused analysis of the traffic, attackers can learn the behaviour of each ECU such as it’s
CAN ID, payload range and transmission rate. In this way, they can simulate ECU behaviour by sending the same data
with the same frequency. An increase in the CAN messages rate will occur which generates an attack. However, if
the attack was more focused, they could initiate an attack to disable particular ECUs. For example, Iehira et al. [60]
introduced a sophisticated spoofing ECU attack by first performing an attack on an ECU by taking advantage of the
error handling mechanism of the CAN bus protocol. This attack works by mimicking the target ECU behaviour, CAN
ID and frequency. Then, the attacker ECU contradicts the target ECU by sending a dominant bit while the original ECU
sends a recessive bit. This would raise an error in the ECU controller which leads, at a certain point, to disconnecting
the ECU from the bus and dropping all the CAN bus communication. This enables an attacker to perform various
attacks, such as an ECU impersonation attack, which is difficult to detect.

6 CAN bus Security Mechanisms

Implementing and testing security of CAN bus traffic has been conducted by many researchers. In this section we
identify current countermeasures used and divide them based on the mechanisms they use, and whether these are
used from within or outside the vehicle. We also consider factors such as the test environment, security metric
being considered, countermeasure used, the type of mitigated attacks, overhead of supporting the countermeasure and
utilization.

14

A PREPRINT - APRIL 24, 2020

6.1 In Vehicle Network Cybersecurity

Given the limited capacity of the CAN bus, any countermeasures used to address its vulnerabilities should consider this
limitation and not overload the bus. Security solutions for a CAN bus can be divided into encryption, authentication
and redesign of the protocol stack by replacing fields in the frame, splitting the message to multiple frames, or by
adding nodes and components to the bus to realise additional capability. These approaches can be costly to deploy.
Cryptography-based methods have focused on securing the CAN bus from malicious messages, while Intrusion
Detection Systems (IDS) focus on the detection of malicious messages. Firewall and Intrusion Prevention Systems
(IPS) can be used in external interfaces to block access to the bus. Implementing a dedicated node to realise the IDS
and firewall may be required.

6.2 Using Cryptography

Implementing cryptography in the CAN bus requires additional computational resources in the ECUs and the CAN bus
controller. Cryptography can be used to provide authentication and data integrity through Message Authentication Code
(MAC) and confidentiality through symmetric and asymmetric cryptosystems. For in-vehicle networks, a key challenge
is to create a secure method that does not alter the payload size (e.g. splitting the message can lead to more load on the
bus) and response time latency which would affect vehicle safety. CAN bus also provides a checksum calculation using
Cyclic Redundancy Code (CRC) to check if there is a change in the frame during transmission, but it only provides
error detection not the integrity and authentication of the frame. An ACK field is used for error detection and correction
purposes. Implementing cryptography in the CAN bus should consider the following [61], [62], [63]:

• Limited frame size and capacity of the bus;
• limited speed of response and high latency;
• broadcast nature of the bus – and lack of support for confidentiality, integrity and authentication by design;
• no backward compatibility;
• limited computational capacity within ECUs.

Lightweight encryption is needed in such embedded systems, due to limited computational capacity within ECUs
inside the vehicle. The approach used in the classical CAN bus protocol involves creating a small MAC tag size,
less than 8bytes, and inserting it along with the actual data payload. This tag provides integrity and authentication
as it is encrypted by a shared secret key. Session keys are used for authentication and to prevent subsequent re-play
attacks. Key distribution is a concern in CAN bus broadcast environments and therefore a pre-loaded key in each
ECU can be used to establish key exchange and freshness to tackle data broadcast and to avoid bus loading due to key
exchange. Also, to tackle the issue of low computing resources, Hardware Security Module (HSM) can be used in
resource-constrained ECUs to provide better encryption/ decryption time. However, these approaches can still be costly
to realise within existing vehicles. In summary, the adopted approaches involve:

SOF
1 bit

r0
1 bit

ACK
1 bit

11 bit
Id

EOF
7 bits

CRC
15 bits

DLC
4 bits

IDE
1 bit

RTR
1 bit

Data
Payload

SOF
1 bit

Frame
Trailer

Frame
Header EOFControl

Field
Data

Payload MAC

SOF
1 bit

r0
1 bit

ACK
1 bit

11 bit
Id

EOF
7 bits

CRC
15 bits

DLC
4 bits

IDE
1 bit

RTR
1 bit

Authentic
Message

CAN Message
 Used

MAC Tag
Inserted in

Payload field

Authentic
CAN

Message

Figure 11: MAC signature inside CAN frame [64]

• Using lightweight Message Authentication Code (MAC) to overcome resource constraints in ECUs, and
making use of a small key size and MAC signature.

• Implementing changes in the CAN protocol standard by replacing fields such as CRC with MAC signature, or
by extending the protocol data field (called CAN+) and extending the data payload to 16 bytes to give more
space for the MAC signature. However, this approach leads to compatibility issues.

15

A PREPRINT - APRIL 24, 2020

Intruder ECU

Resistors Resistors

Improved CAN
Controller

Malicious
MessageData MAC Frame

Trailer
Frame
Header

Message
Transmission

Process

MAC Calculation

Insert MAC Tag

Monitoring ECU
ECU-1

 ECU-2

ECU-3

Key k

Key j

key i

Key for each
 ECU

Key i

Key generated during
Authentication

CAN bus
Malicious
Message

Compare CAN
Message

With legitmate
ECUs stored

Figure 12: CAN message authentication and dedicated monitoring ECU. Derived from [64]

• A Hardware Security Accelerator can be used (as an additional hardware) to overcome computational resource
limitations – however, it may not be a cost-effective approach.

According to the National Institute of Standard and Technology (NIST), HMAC [65] provides authentication and
integrity of the data through a hash function and a shared secret key between sender and receiver. Hash algorithms such
as SHA-1, SHA-224 and SHA-256 produce message digest or MacTag of 160, 224 and 256 bits according to [66]. The
size of this tag is exceeds the maximum data payload of CAN frame (of 64 bits) and thus a truncated tag is used by
deriving a smaller size from the MAC computation.

6.3 CAN Frame Authentication

Authentication mechanisms can be used to provides authentication and integrity of the data for an in-vehicle network.
This mechanism is called Message Authentication Code (MAC). However, this approach does not provide confidentiality
which means CAN traffic is still exposed to sniffing and reverse engineering attacks. Thus, a combination of MAC and
encryption is needed to provide better security. The following approaches can provide authentication and integrity of
CAN bus data, but either change the behaviour of the protocol by splitting CAN frames, replace fields, increase CAN
frame size or increase bus payload and response time. Some approaches also require additional hardware which can
increase the cost of implementation and lead to incompatibility with current vehicles.

-Nilsson et al [67] introduced an approach based on a shared 128-bit key between ECUs and a Cipher-Block Chaining
Message Authentication Code (CBC-MAC) using KASUMI encryption algorithm. Their approach provides integrity
and authentication through a 64-bit MAC tag. However, it splits a single CAN ID message into multiple messages in
order to insert 16-bits inside the CRC field. This means that 4 messages are needed in order to send the 64-bit tag. As a
result, their approach increases the bus load by increasing the number of CAN bus messages and it changes the CAN
protocol behaviour by replacing the CRC field with MAC tags. Furthermore, it causes more latency through CAN
message splitting.

-Wang and Sawhney [36] proposed a trusted group-based technique to enforce access control while minimizing the
distribution of keys through a pre-calculated cryptographic function. Their approach was able to successfully prevent
message injection attacks while message processing delay was approx. 50µs. They used Freescale’s automotive boards
to test their solutions. Trusted group ECUs share a secret symmetric key (K h) – and ECUs in the trusted group can hold
keys of other groups if needed. This approach is effective since it separates telematics and OBD-2 ports which are the
main entry points for attackers. However, their authentication approach is achieved by sending data and authentication
messages for each CAN ID which doubles the bus load.

-Another approach CANAuth used light weight encryption to mitigate sniffing and poisoning attacks [61]. The authors
considered the limitations of the CAN bus protocol and used lightweight encryption mechanisms to mitigate attacks,
but DoS attacks were not investigated and a CAN+ protocol (16bits) was used which is incompatible with standard
CAN bus specifications. The proposed approach uses HMAC function with pre-shared symmetric and group keys for
key distribution. It uses 15 bytes for HMAC flag and key transmission while 1 byte is used for the actual data.

16

A PREPRINT - APRIL 24, 2020

-LCAP in [68] used a one way function to provide a 2byte magic number. The authors proposed using their approach in
the data field (2 bytes out of 8 bytes) in the standard CAN frames 2.0A. In the extended CAN, they used magic number
of 16 bit in the header field of the extended header 29 bit CAN frame 2.0B. Their approach provides authentication and
integrity through symmetric keys and HMAC magic number. LCAP provides protection against re-play attacks due to
the changeable magic number and session keys. A drawback is that it is based on the CAN+ (16 bytes of data) which
raises compatibility issues as the CAN transceiver hardware needs modification to handle the 16 bytes of data payload.

-LibrA-CAN is a broadcast authentication protocol using the MD5 Message Digest, compatible with CAN+ specification
introduced in [69]. Multiple receivers can hold keys and provide authentication roles based on monitoring their
own message ID usage inside the CAN bus. This approach splits CAN messages into normal CAN messages and
authentication tag messages – which increases bus traffic [70]. For improvement, they suggest using CAN+, but the
CAN transceiver hardware should be changed to be able to handle the new CAN+ frame.

-In[71], the authors used a combination of SHA3 and HMAC function along with session keys to avoid re-play attacks.
This method used the length in the CRC fields to insert a cryptographic checksum. The processing time of sending
and receiving a message was not provided in this approach. Also, there is a change in compatibility of the CAN frame
specification by replacing CRC field with MAC tag field.

-CaCAN in [72] is used to carry out authentication and validate integrity of CAN messages. This is achieved by using a
main “Monitor" ECU that shares keys with other ECUs. Using the broadcast behaviour of the CAN us, it receives all
messages and can detect and overwrite unauthorised messages. This approach does not provide confidentiality and
additional hardware is needed as a monitoring ECU node.

-LeiA was introduced in [63] which used 128-bit key, MAC and counter based algorithms to authenticate data and
generate counters to mitigate re-play attacks. This algorithm does not require any changes to the hardware and topology
of the CAN Bus. However, it is compatible only with CAN 2.0B 29-bit extended frame and changes the CAN header
by replacing the 18-bit identifier with a counter – potentially leading to incompatibility issues with current vehicle
networks.

-In [73], the authors introduced a one-way hash chain using HMAC-MD5 and AES-128 to provide authentication. they
tested their approach on simulated ECUs using CANoe Vector tool and Freescale S12XF as CAN hardware. Re-play
and spoofing attacks were considered in this approach. They used the symmetric key and Authentication Key Exchange
Protocol2 (AKEP2), and assume that the symmetric key and the ID of the sender are stored during manufacture. They
have demonstrated only a limited overhead (bus load and latency) when using their approach.

-In [64], the authors have used HMAC-SHA256 to provide ECU authentication and data integrity. Their MAC tag size
is 1byte and it is inserted along with the actual data payload and a counter size of 4-bit to prevent re-play attacks. They
include a ‘Monitor’ ECU that receives all the messages on the bus and checks if they are legitimate, by holding all the
keys of the ECUs. In case of an illegitimate message, they send a remote frame to overwrite the malicious message.

While the above approaches provide authentication and integrity for the CAN bus protocol, they suffer from other
limitations such as backward incompatibility, real time constrains (delayed authentication) or cost of implementations
by using dedicated hardware. Therefore, a software-based approach should focus on providing authentication and
integrity without failing in these shortcomings.

-The approach proposed by Fassak et al. [74] made use of an asymmetric key. HMAC is then used with changeable
session keys. The authors assume that both public and private keys are pre-installed in the ECUs during manufacture.
Also, the performance of their approach was validated analytically using a commercial bus load calculator by OptimumG.
The security of the algorithm was validated using the AVISPA software. However, their approach was not tested in
a realistic test environment, and it is not compatible with current vehicles – as their assumption is to embed the key
during manufacture.

- Groza and Murvay [75] provide a secure broadcast protocol for the CAN bus. It uses a central ECU to manage and
distribute the keys between the sender and the receiver. They validated their approach using Freescale and S12X (16-bit)
and TriCore (32bit) microcontrollers. However, their approach is based on a delayed authentication approach which is
difficult to support in real time for a CAN bus [76].

- In [70], the authors introduced “TOUCAN” which provides authentication, integrity and encryption for a CAN bus.
They use AES 128bit and Chaskey hashing for MAC authentication without the need for ECU upgrade or additional
hardware on the bus. They tested their approach on STM32F407 CAN boards. The actual data in the payload is 40bits
while the remaining 24bits are used for the hashing value. In their approach, (using AES 128 and Chaskey hashing) the
overall execution times are approx. 12ms.

17

A PREPRINT - APRIL 24, 2020

Table 5: Frames Authentication for Controller Area Network

Authors Method Attacks
mitigated

Hardware
Security
Module

Real
time

Bus
load

Change
CAN bus

Test
bed
environment

[67] CBC-MAC • Injection
• spoofing No Delayed

authentication

Multiple
CAN
frames

Splitting
CAN frame
for authentication
purposes

Theoretical

[36]
Trusted Group
HMAC
Symmetric key

• Sniffing,
• Spoofing
• Injection

Pre-load keys
During
manufacturing

Yes Message
Splitting

Split CAN frames
for authentication
purposes

Freescale’s
automotive
boards

[61]
HMAC
Symmetric key
Counters

• Sniffing,
• Spoofing
• Injection
• Replay

No Yes 16 bytes of
data payload

CAN+ 16 Bytes
All nodes must
Know pre-shared key

Theoretical

[68]

One way function
Magic number
of 2 bytes
Session keys

• Replay
• Injection No

-Yes, but
Consume time
during key
distribution

Add extra
2 Bytes in
the payload

HMAC tag
in the 2.0B CAN
frame header

Starter-TRAK
TRK-MPC5604B
board

[72]
HMAC
Symmetric keys
Counter

• Replay
• Spoofing
• Injection

ECU
server Yes No

Special ECU
server
hardware

Altera FPGA
board
CAN
transceiver board

[71] SAH3
HMAC

• Replay
• Injection No Yes No Replace CRC

field Theoretical

[69] MD5
LMAC

• Replay
• Injection No No Yes Split CAN messages

Using CAN+ Theoretical

[63]
128-bit key
MAC
Counter

• Replay
• Injection
• Spoofing

No No No
16-bit counter
in the CAN 2.0b
frame header

FreescaleS12X
and Infineon TriCore

[73]
HMAC
MD5
AES-128

• Spoofing
• Replay No Yes No

Insert MAC tag
in 18-bit filed
in CAN 2.0B header

CANoeVector tool
Freescale
S12XF board

[64] HMAC
SHA 256

• Replay
• Spoofing

Dedicated
ECU-FPGA
board
with built-in
HMAC

Yes No
Insert 8-bit
MAC tag
4-bit counter

Altera FPGA
development
board and CAN
transceiver board

HMAC, Hash Message Authentication Code; CBC-MAC, Cipher Block Chaining Message Authentication Code;
LM-MAC, Linearly Mixed MAC; MD5, Message Digest; SHA3, Secure Hash Algorithm3.

-In [77], the authors used AES 128 encryption and HMAC for authentication. They also use a compression algorithm
to improve the efficiency of their approach by reducing the delay time and bus load. They have used Vector CANoe
software to validate their approach, showing that the average message delay is 0.13ms.

-In [78], the authors focus on preventing re-play and spoofing attacks by using various approaches such as message
counters, CAN ID tables to look up the ID of each ECU and which MAC to use for each ECU ID. Pair-wise symmetric
key is used as each ECU stores the shared key with other ECUs. Also, the MAC tag is previously generated and stored
in the look up ID table where the ECU uses this ID table to link the receiving ECU with the correspondent MAC tag.
Their approach does not need any hardware modification and has a low message latency and bus load. However, it does
not provide confidentiality.

Table 6: Message Authentication for CAN frames

Authors Method Attacks
mitigated

Hardware
Security
Module

Real
time

Bus
load

Change
CAN bus

Test
bed
environment

[74]
• Asymmetric key
• HMAC
• Changeable keys

• Replay
• Spoofing No Yes Load during

key exchange

Assume
pre-installed
keys

Analytical evaluation

[79] • Symmetric key
• HMAC

• Replay
• Spoofing No Delayed

authentication No Delayed
authentication

S12 equipped with
an XGATE
coprocessor
and Infineon TriCore

[70] • AES-128
• Chasekey HMAC

• Spoofing
• Replay No Yes No

24-bit MAC tag
and 40-bits
for the actual data

STM32F407
CAN boards

[77]
• AES-128
• HMAC
• Compression algorithm

• Replay
• Injection No Yes No No CANoe

simulator

[78]
• MAC tables
• Pairwise key
• Symmetric key

• Replay
• Spoofing ECU server No Yes No No

18

A PREPRINT - APRIL 24, 2020

6.4 CAN Frame Encryption

-In [80] the authors used a combination of encryption and authentication mechanisms to provide data confidentiality,
integrity and authenticity. This approach provides prevention against sniffing and injection attacks. However, it sends
more than one frame for a single CAN ID message which can lead to latency and increased bus load [70] .

-In [81] the authors used a hardware-based approach to provide authentication and encryption for a CAN bus. A
dedicated hardware (ECU Server) was used to manage all the ECUs in the CAN bus to authenticate ECUs and distribute
keys. A Xilinx Kintex KC705 FPGA Evaluation board and an embedded Physical Unlockable Function (PUF) was used
in the testbed. This approach assumes that keys are registered for ECUs during manufacture, and assembling and CAN
controller boards need to support the physical PUF function. This is likely to lead to less overhead, but it is infeasible to
implement in current vehicle network due to the hardware modifications required.

-CANTrack algorithm by Farag et al. [82] uses a dynamic symmetric key to encrypt the 8byte data payload, but does
not modify the Msg ID as it is used to access the bus during the arbitration mechanism. They have tested their approach
with CANoe software, and it has shown to prevent sniffing, replay and spoofing attacks.

Table 7: CAN Frame Encryption methods

Authors Method Attacks
mitigated

Hardware
Security
Module

Real
time

Bus
load

Change
CAN bus

Test
bed
environment

[80]

• HMAC
• SHA1
• AES
• DES

• Sniffing
• Replay
• Spoofing

No Yes Yes Split CAN
Frames Simulator

[81] • AES-128
• Asymmetric key

• Sniffing
• Replay
• spoofing

Hardware PUF
ECU server Yes

During
initialisation
and session

Change CAN
transceiver

Xilinx Kintex KC705 FPGA
hardware embedded~ PUF

[82] • Dynamic symmetric key
• Key generator

• Spoofing
• Replay
• Sniffing

No Yes No No CANoe software

CAN FD was introduced to tackle the needs of higher speed and larger data payload size. The following approaches are
focused on CAN FD.

- In [83], the authors introduced an architecture supporting key management, encryption and authentication for a CAN
FD bus. They used symmetric key and Authenticated Key Exchange Protocol 2 (AKEP2) to ensure distribution of keys
and key freshness. They provided 16 bytes of HMAC-SHA256 tags and AES-128 to encrypt the rest of the data (47
bytes). Also, they provided an access control gateway ECU to limit the number of nodes that can access the bus. They
validated their approach using three types of CAN-FD boards and CANoe software.

-Agrawal et al. [84] introduced a secure CAN FD bus which uses public, private keys and groups of ECUs connected
through a Gateway ECU (GECU). The GECU is used to verify session keys and key freshness for each ECU, and
to forward frames between different CAN sub-buses, e.g. the high and low speed CAN buses. This approach uses
36bytes for the data payload and 28bytes for the cryptographic tag. They used CANoe software and the LPC54618
microcontroller to validate their approach.

-Groza et al. [79] introduced an approach for supporting CAN FD authentication. They used CANoe software to validate
their approach. Their approach makes use of a group-based key sharing and generation key algorithm, a MAC algorithm
to produce tags and a verification algorithm to validate received messages.

-Carel et al. [85] used the lightweight Chaskey MAC algorithm over limited capacity computational resources such as a
32-bit microcontroller. They used this algorithm with a 128bit key and compared it with the HMAC-SHA1 algorithm.
They found Chaskey has a lower latency comparing with HMAC-SHA1. They used 4bytes as message counters, 16
bytes for Chaskey MAC tag and 43 bytes of actual data payload. Their approach has focused on message authentication
and ignores issues of data confidentiality.

6.5 In-Vehicle Intrusion Detection Systems

Using IDS to detect malicious attacks is a key approach implemented inside vehicle networks. IDS can be signature
based or anomaly-based systems [86]. The location of the IDS is also a key decision: Host-IDS (HIDS) based and
Network-IDS (NIDS) based [53]. HIDS to detect attacks [87] may not be applicable for current vehicle networks and
not cost effective, as this would require a change in ECUs. Therefore, installing a NIDS, as an additional node on the
CAN bus, such as an OBD-2 dongle can be more feasible and practical and does not need CAN bus modification [88].

19

A PREPRINT - APRIL 24, 2020

Table 8: CAN FD encryption and authentication. Improved datapayload 64-bytes, allow more space for MAC signature
along with Actual data

Authors Method Attacks
mitigated

Hardware
Security
Module

Real
time

Bus
load

Change
CAN bus

Test
bed
environment

[83]
• AES-128
• HMAC
• SHA256

• Sniffing
• Replay
• Spoofing

No Yes No No
Threetypes of CAN-FD
boards and
CANoe software

[84]
• Gateway ECU
• Public and
• Private keys

• Sniffing
• Replay
• spoofing

No Yes No Gateway ECU
needed

CANoeVector
and LPC54618
micro-controller

[79] • ECU Group
• Sharing keys

• Spoofing
• Replay
• Sniffing

No Yes NO Group based key
sharing

neonTriCore controllers
contrasted with low-end
Freescale S12X cores

[85]
• ChaskeyMAC
• Pre-shared
• 128 bit key

• Replay
• Spoofing No Yes No 4 bytes counters

16 bytes MAC tag 43 bytes actual data
ArduinoUno Rev3
Arduino MPro

An IDS can be passive i.e. only reporting attacks, or active i.e. performing actions to prevent attacks. ECUs inside the
vehicle have a fixed interval to generate CAN messages even if no change occurs [89]. Thus the implementation of
an IDS relies on deviations from a constant CAN traffic behaviour. Another approach uses the characteristics of the
physical layer of each ECU, such as its signal and voltage profile, and compares the changes in these characteristics to
detect anomalies. Müter et al. [90] have categorised the features that an IDS can use to detect attacks on the bus using
the following sensors:

• Format sensor: looks at different fields in the CAN frame such the correct size of the CAN message and the
value of the check sum field.

• Location sensor: indicates whether the message comes from the right CAN subsystems.
• Payload range sensor: It looks at the legitimate range of values (data payload) inside the payload field.
• Frequency sensor: considers the timing of the CAN message, as ECUs have a fixed frequency of data

exchange/ operation.
• Correlation sensor: considers messages exchanged between multiple sub-domains within a vehicular net-

works. The gateway sensor is used to connect different sub-networks such as a high and low CAN domain.
Thus, this sensor can use this feature to verify the legitimacy of the message that is transferred from one
domain to another.

• Protocol sensor: is used to monitor CAN traffic and detect changes in the protocol specification, such as the
order of the messages and validity of the start and end time.

• Plausibility sensor: checks if payload values are in the pre-defined range, and if there is no sudden, anomalous
increase in the payload.

• Consistency sensor: looks at the consistency of the values in the payload field. This sensor operates in
contrast to the Plausibility, looking at additional sensors to verify the consistency of the messages transferred
on the CAN bus. For instance, the rotation of a tyre would indicate that the vehicle is stopped, while the GPS
sensor indicates that the vehicle is moving. This approach therefore checks for consistency across multiple
sensor values.

Below is a figure 13 illustrates the position of an IDS inside a CAN network. The IDS can use different features in data
link layer CAN frames such as:

• CAN identifier: 11-bit or 29-bit value which determines the priority of the message on the bus and the content of the
message. For example, CAN ID 0x000 is a malicious message since it can be used to occupy the bus and perform
DoS attacks. Also, monitoring the broadcast intervals can be through the CAN ID frequency as it is unique across the
network.

• DLC: Data Length Code is a 4-bit field and used to identify the length of the data payload. This also has a fixed value
and range, as each ECU uses fixed byte size in the data payload.

• Data field: It is 8 bytes maximum and it also has a fixed length and range which should not be exceeded. Anomalies
can be detected if abnormal values and changes occur in the data field. The authorised identifier, the payload range and
consistency, fixed DLC length and fixed rate are features that can be used to detect malicious and anomalous traffic.

• Timestamp: Each CAN frame has a timestamp which can be either hardware or software based. Through this
timestamp, an IDS can monitor the time intervals of CAN messages and observe any unusual behaviour. This approach
is based on the observation that that ECUs have fixed broadcast intervals and thus an anomaly can be detected.

20

A PREPRINT - APRIL 24, 2020

ECU-1
Network-

IDS
(N-IDS)

ECU-2

ECU-3

H-IDS
Host-IDS

Host-IDS
H-IDS

Host-IDS
H-IDS

CAN bus Network

ECU

IDS-OBD2
Dongle

ECU
OBD-II

Port

Figure 13: Positions of IDS inside automotive CAN network

CAN bus Network

OBD-II

Telematics

InfotainementSensors

Engien
and

Body
ECUs

Wi-Fi on
board

(a)Remote Acces

(b)Physcial Attacks

IDS
Monitor, Detect

and
Alert

(c) Sensors Attacks (d) Infotainment Attacks

Remote Attack Remote and Physical
Attacks

Figure 14: IDS as ECU inside a vehicle – based on [91]

6.6 IDS based on signature

This IDS is based on detecting a pre-defined list of attack signatures. Although it has low false positive in the detection
process, it needs to update its database signatures when new attacks emerge [92]. Also, the signature-based IDS
needs to maintain a potentially large database of known attacks on in-vehicle networks (including potential variants of
these) [93]. Extracting attack signatures in real time for a moving can also be a challenge and suffer from high latency.

Studnia et al. [94] introduced a signature-based IDS which uses a list of signature derived from a CAN data set.
However, this approach has limited benefit as the length of CAN bus words may not be known apriori. Furthermore, this
approach may fail to detect an attack if it does not sense the first part of the data exchanged as malicious packets [95].
Larson et al. [87] introduced a Host IDS (HIDS) installed on each ECU and compares messages on the bus based on the
CAN bus specification. This IDS monitors all incoming and outgoing traffic and compares them against the protocol
specification. This approach requires changing the network topology and is not usable for real time applications. In
[96], the authors introduced an anti-spoofing system that detects malicious messages using each ECU – by detecting
CAN message ID that were not sent by the ECU itself. The ECU informs the IDS and an interrupt pulse is sent to the
CAN bus to overwrite the spoofed message.

6.7 IDS based on Anomaly Detection

This method is implemented using statistical, machine learning, rule-based and physical fingerprint methods. It builds a
learning model able to identify abnormal traffic, identify new patterns and predict attacks that have not been observed
before.

21

A PREPRINT - APRIL 24, 2020

Table 9: IDS using signatures & rules
Authors Type Layer CAN ID /

Data Payload
Detection
mechanism

Attacks
Detected Prevention

[94] Signature
based

DataLink Layer
(Controller layer)

CAN frame ID
and dataflow

Derive
signature and
rules match

Malicious CAN ID
and false payload No

[87] Specification DataLink
Extract signature
from CAN Open protocol
specifications

Detect attack based
on rules

Specification
based attacks No

[96] Access
list Data link CAN ID HIDS in each ECU Malicious

CAN ID No

6.8 IDS using statistical approaches

This IDS learns normal behaviour of the system based on conditional statistical relationship analysis – as outlined
in figure 15. A baseline pattern is then developed as a threshold, in case changes are detected from the norm. In
CAN bus networks, statistical analysis uses CAN features such as CAN ID frequency and payload consistency. In
general, ECUs have fixed intervals of time to send CAN frames. These CAN messages have a unique CAN identifier
and used as a feature along with the time interval between frames, and the number of frames in each time unit [97].
Furthermore, the payloads inside CAN frames usually have consistent sequential values. A broader approach involves
linking relationships between vehicular parameters such as the speed and RPM signals (under normal operation, there is
a statistical correlation between RPM and speed). Finally, transmission frequency of messages, identification (ID) of
messages, the number of packets received over a pre-determined time frame, message received sequence, and semantics
of data fields can be used [98]. Hence, this IDS can detect manipulated and incorrect payload values along with

Statistical
Techniques

One
ANOVA

CAN ID
Sequence

Hamming
Distance Entropy Z-Score

ARIMA

Response time
using remote

frame
request and

replay

Heretical
Temporal
Memory

Figure 15: IDS based on Statistical Techniques

inconsistent use of CAN ID. The following statistical approaches have been reported in literature:

• number of packets exchanged within a particular time period;
• time interval between CAN frames;
• frequency of transmission using a particular CAN ID;
• throughput observed;
• response time using remote frame requests and message replay;
• Hamming distance to compare messages;
• analysis approach used, e.g. Entropy, Anova, Z-score, ARIMA (time wondow based moving average),

Heretical Temporal Memory etc.

CAN ID Frequency: -Ling and Feng [99] measure anomalies observed in traffic frequency – to detect DoS and message
injection attacks. However using their approach it is difficult to detect small volume attacks, payload manipulation
attacks and impersonated ECU attacks where legitimate CAN ID messages are generated from the attacker ECU.

Intervals between CAN frames: -Cho and Shin [100] introduced a clock-based IDS to fingerprint each ECU based on
its message exchange interval. Their approach uses a least square cost function and sequential analysis technique called
Cumulative Sum algorithm to detect anomalies. Similar to the previous approach, it is difficult to detect low volume
injected messages and impersonated disabled ECUs. The testbed consists of an Arduino UNO board and a SeedStudio
CAN shield.

Other approaches identified in [101] have used an algorithm to analyse and detect unusual time interval for specific
CAN ID message transmissions. Their approach focused on CAN injection attacks.

22

A PREPRINT - APRIL 24, 2020

CAN ID frequency: -In [102], the authors have introduced an IDS that can monitor CAN message frequency for each
CAN message ID used by ECUs. This approach can also detect CAN injection and DoS attacks, but small forged
messages are difficult to detect since they might not alter the broadcast frequency of CAN ID. Furthermore, their
approach does not consider data payload manipulation attack.

CAN traffic behaviour over a time window: In [103], the author developed an IDS based on an analysis of anomalies
in data flow. This work involves comparing statistical values of current CAN traffic, over a one second time window,
with historical values. However, this anomaly detection over a time window cannot precisely detect small sized
malicious messages.[93].

Remote Frame Request and Reply intervals: Lee et al [104] used remote frames to detect anomalies based on the
request and response intervals between frames. Since each ECU replies to a remote frame which has its CAN message
id (and where the data payload field is empty), the authors calculated the average time between the request and reply to
each ECU, and were able to detect anomalies based on time interval variation against a calculated average response
time. They were able to detect CAN bus injection and ECU impersonation, as this would change the average response
to a remote frame and in case of an impersonated ECU in the network, this would get response from both the legitimate
and illegitimate ECU.

Entropy of CAN ID and data payload behaviour: In [105], the authors consider the CAN id and the payload as
features for their approach. They measured the entropy associated with variation in CAN traffic compared to a baseline
of normal CAN traffic. They have tested their approach against frame injection attacks, and they found that their
approach cannot detect a small number of injected CAN messages.

Entropy of CAN ID and data payload behaviour: In [106], the authors evaluated an entropy-based anomaly detection
IDS for in-vehicle networks, and they found that dividing CAN messages into classes and feeding them to an entropy-
based anomaly detection algorithm would lead to a more accurate detection (compared to considering one class). Their
anomaly detection approach calculates entropy of all CAN bus traffic (message ids) over a time window, compared to a
baseline (normal) traffic over the same time window. Also, they calculated the entropy for each message id separately
over a time window with a fixed number of messages. They found that measuring the entropy for each message id gives
better performance in detecting smaller forged attacks, whereas considering all CAN traffic together would detect only
larger sized attacks.

Entropy of CAN ID and data payload behaviour: Wu et al. [107] used an entropy-based IDS, with a fixed number
of CAN frames over a sliding window as a baseline for their IDS. They improved the detection accuracy of the IDS
based on the use of entropy calculation, by using the optimal sliding window size with a fixed number of messages.
They were able to achieve a better accuracy compared to previous entropy based IDS.

One-way ANOVA Function: In [108], the authors used a one-way ANOVA function to statistically determine the
pattern within a data set and created a set of normal patterns to detect anomalies. They grouped CAN data set using
vehicle parameters such as: fuel usage, gear ratio, engine parameters, etc to detect abnormal events for each group.

Hamming Distance: Anomaly detection based on Hamming distance algorithms have also been considered by other
authors, e.g. in [93] the authors analysed CAN payload and recorded each bit in the data field. They calculate Hamming
distance for each payload to each message id, and attacks were identified based on significant deviation from the
calculated Hamming distance function.

Quantized interval and the absolute Differences: In [109], the authors used an anomaly detection system based on
quantized intervals for periodic CAN ID, and determined the absolute difference of the CAN payload values. Their
approach was validated against message injection attacks and it showed positive results (using metrics such as True
Positive/Negative Rates and False Positive/Negative Rates). However, they acknowledged that low volume injection
attacks were difficult to detect using their approach.

Cumulative Sum algorithm: In [110], the authors used an anomaly detection system based on the statistical cumulative
sum algorithm. This is a sequential analysis technique used to support change detection.

ARIMA and Z-SCORE in Defined Time Window: In [34], the authors used an average value for the number of times
a CAN ID was broadcast mean over a time window. This was used to determine changes in the CAN ID broadcast
intervals over different time windows. The authors used a Z-Score and ARIMA, along with a supervised method, to
compare the mean broadcast intervals of CAN ID. They were able to detect CAN injections and dropped packet attacks.

Heretical Temporal Memory (HTM): In [111], the authors used a distributed IDS based on Heretical Temporal
Memory (HTM), a technique (similar to recurrent neural networks) widely used in time series forecasting and analysis.

23

A PREPRINT - APRIL 24, 2020

Table 10: IDS based on Statistical methods
Authors Type Layer CANID /

Data Payload
Detection
mechanism

Attacks
Detected

CAN ID
Frequency
[99]

Statistics Data Link
(Controller layer) CAN ID behaviour Detect malicious CAN ID

Detect Unusual CAN frequency
• Injection
• DoS

Entropy based
anomaly
Detection
[106]

Statistics Data Link CAN ID frequency
changed

Provide independent
variables
for entropy-based anomaly
detector
for each group or class of
CAN messages

• Malicious CAN ID
• Manipulated payload

Detecting attacks
based on identifying
Packet timing Anomalies
in Time Windows
[34]

Statistics Data link CAN ID broadcast mean
in defined time window

Detect attack based
on specification rules

• Injections
• DoS attacks

Detecting attacks
through
Hamming distance
[93]

Statistics Data link Consecutive data payloads
in certain CAN message ids

Compare the changes in
Hamming distance
values in sequential data
payloads of CAN message ID

• Injection
• Spoofing

Anomaly detection
based
on ID sequence
[58]

Statistics Data link Sequence between
CAN ID messages

Compare the sequence
of CAN ID
with the knowledge
acquired from real time model

• Replay
• injection

Entropy IDS based
on CAN ID
[112]

Statistics Data link Entropy of each CAN ID Detect the changes
on each bit of the CAN ID

• Flooding
• injection

Time series algorithm.
ARIMA and Z-Score
[34]

Statistics Data link Broadcast intervals
in time window

Check the change
in broadcast
intervals of CAN ID

• Drop
• injection

offset ratio and
remote frame IDS
[104]

Statistics Data link CAN request and response
intervals using remote frame

Time interval changes
and the derived change in
response to a remote frame

• Injection
• ECU impersonation

One-Way ANOVA
[108]

Statistics Data link Data payload consistency
across multiple CAN signals

Compare the mean
of related CAN
frames according to
the normal
statistical observation
eg. speed and engine

• Data payload
• manipulation

Cumulative Sum
algorithm
in defined time
window
[110]

Statistics Data link CAN ID sequence CAN ID sequence behaviour
• Injection
• DoS attack
• Frame Fuzz. Attack

6.9 Machine Learning-based Approaches

IDS based on Machine Learning (ML) can be a good choice in extracting and learning normal vs. anomalous behaviour
and then providing a model to detect and predict attacks. ML-IDS is widely used to handle large data volumes of
CAN traffic with multiple features. It is useful to have a method to extract raw CAN data and pre-process it. This is
particularly important as vehicle manufacturers tend not to publish detailed specification and provide guidance on how
to decode raw data features. Supervised ML algorithms can be time consuming, as raw CAN data needs to be labelled,
CAN attacks need to be identified and then the data needs to be labelled and classified as well. Whereas unsupervised
ML approaches do not require labelled data sets, and the algorithms can find common patterns directly from data, and
can use these patterns to classify traffic and identify anomalous behaviour.

Hidden Markov Models: this approach works on time series data to detect anomalous behaviour. Narayanan et
al. [113] used an IDS based on a Hidden Markov Model to build a model able to detect anomalies and raise alarms.
They investigated the use of each ID separately and using multiple vehicle variables together, such as vehicle speed
and RPM CAN ID messages. They evaluated their model using instant observations, against sudden changes in speed
and RPM by injecting malicious message for the parameters separately. They evaluated multiple attacks by injecting
malicious speed and RPM messages together. Similarly, in [114] the authors used a Hidden Markov Model to learn
normal vehicle behaviour and used a regression model to build a threshold for the probability of occurrence of events
to identify anomalies. This is a hybrid IDS approach which the authors in [114] trained online during driving and
stationary vehicle behaviour through captured data from the CAN bus. They tested the model with noise attacks to
mimic a real environment.

Support Vector Machines (SVM): In [115], the authors enhanced one-class Support Vector Machines (SVM) to work
with multiple variables to classify CAN data using an unsupervised ML technique. Their technique used unlabelled

24

A PREPRINT - APRIL 24, 2020

Machine Learning
Techniques

Hidden Markov
Model

Nearest Neighbour
Classifier

Support Vector
Machine

Neural
Networks

Decision
Trees

-Hidden Markove
Univariables and

Multivariabels CANID
- Hiiden Markov and

Regression model

-Fuzzy
Classification and

NN

-Enhanced one-class
(SVM) with

multivariable
-SVM with modified

BAT algorithm

-DBN
- RNN with LSTM

-CNN
- AutoEncoders

-Regression Decision
Tree with (GBDT)

Entropy

-Euclidean
Distance and

Nearest Neighbour

Algorithms

Bayesian
Networks

Figure 16: Machine learning based IDS

time series data from a vehicle to learn normal behaviour and detect anomalies based on deviations. Their approach
used a training set from real vehicles with error free logs. They then used a model with noisy data to detect errors and
anomalies in the recorded data. In [95], the authors used one-class SVM, comparing their approach with a Random
Forest and classical One-class SVM (leading to better detection accuracy using the True Positive Rate metric).

Neural Networks (NN): In [116] the authors used deep neural networks to learn normal patterns using unsupervised
data sets, and to detect deviation from normal as anomalies. They have used an unsupervised Deep Believe Network
(DBN) to pre-process the data and identify a normal pattern. To validate their approach, they inserted noise to their test
data set to mimic real vehicle data. They simulated and generated CAN frames using a real world vehicle test bed and
network experiments software [117].

In [35], the authors used a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) to detect attacks
on the CAN bus. Their approach works with raw CAN bus data without the need to reduce and abstract data during the
pre-processing phase of analysis.

In [118], the authors used Generative Advertorial Nets (GANs) to identify patterns of CAN data without classification.
Their approach was able to detect anomalies based on the normal data provided. They tested their approach against
Denial of Service (DoS), frame fuzzification and Spoofing attacks. Their work demonstrates that this technique is able
to detect attacks with high accuracy.

In [91], the authors have used Convolutional Neural Networks (CNNs) to build an IDS able to detect sequential patterns
of vehicle traffic to detect Spoofing and DoS attacks. Their approach is based on the idea that CAN traffic is fed directly
to their model without the need for pre-processing. They tested their approach offline, and they acknowledged that it is
difficult to use it online in current vehicles.

In [119], the authors have used a Recurrent Neural Network (RNN) with three LSTM layers: a dropout layer and two
dense layers. The former layer is used to prevent over fitting and the latter dense layer consists of 64 nodes to predict
data payload for each CAN ID. Their approach uses an unsupervised technique where it does not need labelled free
attack data, and trained on labelled attack data set. They argue that an ideal IDS should be able to plug inside existing
vehicles to detect anomalies without the need for either reverse engineering CAN traffic or contacting the vehicle
manufacturer to get CAN messages specification.

In [120], the authors used a neural network model which consists of LSTM for CAN bus time series behaviour,
auto-encoder to learn the normal behaviour of unlabelled data in unsupervised manner. Also, Exponential Linear Unit
(ELU) is used for better classification as part of their neural network model. This approach benefit from the LSTM
ability to learn from previous events of CAN bus traffic as it is it is suitable for time series data and the auto-encoder
ability to extract normal behaviour from unsupervised datasets. This is suitable for CAN bus data as the CAN bus data
representation is not published and considered as confidential and private for car makers.

In [121], the authors used unsupervised deep learning method known as Deep Contractive Autoencoders (DCAE).
Furthermore, they have evaluated their approach against DoS, frame fuzzification to impersonate attacks while they
have used metrics such as Mean Square Error and Mean Absolute Error to compare between actual and predicted data.

In [122], the authors also used unsupervised deep learning method using multiple layers of Stacked Sparse Autoencoders
(SSAEs). This SSAE finds meaningful data representation of CAN, which enables their model to classify attacks from

25

A PREPRINT - APRIL 24, 2020

normal CAN data points. Finally, their approach has shown better performance compared to basic Sparsed and Stacked
Autoencoders.

In a different approach, authors in [48] have used a deep learning IDS models using Cloud computing to detect
cyber-attacks on the CAN bus. This approach can benefit from the large number of computational resources in the
cloud, while it can be limited to provide offline detection.

In [123], Sharma and Moller have introduced an architecture for using IDS based on neural networks to detect attacks
for in-vehicle networks, alert a manufacturer, surrounded connected cars and push updates to mitigate the attacks.
However, this is a theoretical framework that the authors have not validated on real scenarios.

In [124], the authors have used CAN ID, data payload and intervals between CAN messages using an RNN algorithm.
They tested their approach in a simulated environment using CAN data extracted from a real vehicle. They considered
malfunction attack (false CAN ID and data payload) and flooding attack.

Another hybrid IDS is introduced in [125], based on a specification based IDS used to detect data payload consistency
as a first stage. The authors then use an ML algorithms such as RNN, SVM and Lightweight online Detector to detect
anomalies.

Decision trees (DT): Decision tree-based approaches classify CAN data into two classes (normal, anomalous). DT
needs a supervised labelled data set during the training stage to be able to make decisions. In [126], authors have used a
regression Decision Tree with Gradient Boosting (GBDT) technique to make a better classifier. They have used entropy
to construct the decision algorithm in which they calculated the entropy of the CAN ID and the data payload time. Also,
Gradient Boosting is a technique of using multiple trees and training them to get the optimal DT model. They validated
their approach using real captured CAN data containing 750,000 messages. They changed the test data set by inserting
random abnormal values as anomalies.

Nearest Neighbour Classifier: In [127], the authors used fuzzy classification algorithms based on Nearest Neighbour
classifiers (NNC) to discriminate attacks targeting the CAN bus. They used a data set available online which contains
CAN attacks to validate their approach. They used the data payload, actual data (8bytes), as features to classify CAN
traffic. They tested their approach on different attacks such as DoS, frame injection and frame fuzzification provided
in the data set. They achieved a precision value between 0.85 to 1 using a neural network algorithm. However, this
detector may fail to detect small forged injected messages and impersonated ECU attacks. In [128], the authors used a
combination of Euclidean distance and nearest neighbour algorithms. They improved the method of distance based
nearest neighbour technique by categorising CAN data into four domains – improving potential prediction accuracy by
limiting to these four domains. They tested their approach against frame fuzzification attacks where they randomly
change the data payload of the logged CAN messages. They considered CAN ID frequency, time between packets and
data payload values as features.

Bayesian Networks: Bayesian networks is a graphical model that uses probabilistic relations between related variables.
IDS based on this approach can utilise a variety of features such as the ability of Bayesian networks, e.g.: (1) to predict
the sequence (time evolution) of an event; (2) to integrate previous knowledge with probabilistic techniques, and (3) to
handle missing data by encoding inter-dependencies between variables[129]

In [130], authors have used a collection of sensor data e.g speed, geo-location and routes from a connected car. Their
approach then makes use of a detection system using probabilistic Recursive Bayesian Estimation IDS. They have used
three models in their approach: filtering (estimating the current event value), smoothing (estimating past event value)
and prediction (estimation the likelihood of a future event).

In [131], the authors looked at various attack vectors on autonomous vehicles using a Bayesian network to detect and
classify the type and source of the attack e.g cyber-physical attacks using sensor data from autonomous vehicle. They
have used Hill-Climbing algorithm to construct a Direct Acyclic Graph (DAG) to learn the behaviour of all data sources,
classify these sources and detect cyber-attacks (remote) and physical attacks based on the source of the data.

In [132], the authors used a series of probabilistic approaches based on a Bayesian network to detect attacks. They
implemented a test bed based on the CARLA simulator along with support for accelerator, steer, brake sensors and
IDS connected to the simulator as ECUs. Furthermore, they evaluated their IDS based on various metrics such as true
positive and true negative rates, precision, recall and F1 score.

6.10 IDS based on Physical Characteristics

This approach works at the physical layer of the CAN bus, as it builds a profile of signals and voltage signature for each
ECU. It then compares the traffic with the profile for abnormal traffic. In [134], the authors introduced a hardware-based
Intrusion Response System (IRS). This is a signal and voltage based physical layer (transceiver layer) IDS which

26

A PREPRINT - APRIL 24, 2020

Table 11: Machine Learning based IDS
Authors Type Detecting

threshold
Detection
mechanism

Attacks
Detected

[113] Hidden Markov Model
Univariante CAN signal
Multivariant CAN signals
e.g RPM and speed

Deviation from the
sequence behaviour

• Single injection
• Multiple injection

[114] Hidden Markov Model
Regression Model

HMM and regression
model to build
a threshold for
the log probabilities

Offline learning from
dataset and online
learning

• Noise Attack

[115] Enhaced SVM CAN ID and data payload
Multivarinete CAN signals

Deviation from
ESVM Enhanced one-class
Support Vector Machine

• Error and
• Signal faults

[133] O-SVM

CAN message intervals
and frequencies
One Class support Vector
based Anomaly IDS

Anomaly based on
One SVM
class detection

• Fuzzing

[95] O-SVM with modified
BAT alogrithm

One-class SVM
algorithm

• Injection
• DoS

[35]
Recurrent Neural Network
(RNN)with
long short-term memory

CAN ID and data payload
behaviour

Devaition from the RRN
model and observations
learned in LSTM mechanism

• Injection
• DoS

[116]
Deep Believe
Neural Network
with Probability feature

CAN ID and data payload
behaviour

Change from the
NN model patteren • Injection

[127]
Fuzzy classification
Nearest Neighbor
Classification

CAN ID and data payload
Checking each byte of the
datapayload as features
to detect anomalies

• DoS
• Injection
• Fuzzy

[128]
Euclidean distance
and nearest
neighbor algorithms

CAN ID frequency in time window
Change in CAN ID
broadcast
data payload

• Fuzzy

[126]
Regression Decision Tree
with Gradient Boosting
(GBDT) Entropy

CAN ID and data payload
entropy change

Entropy change
of CAN traffic

• Injection
• DoS

[125] MLHybrid-IDS

CAN messages
payload sequence in
static check module.
RNN based IDS
OCSVM and Online
Algorithm LODA

Detection in time window
and payload consistency

• Injection
• DoS

[111]
Multiple
Anomaly IDS
based on HMS

Data sequence
anomaly based
on HMS

Multiple HMS-IDS
for each CAN signal
learn from online stream

• Injection
• DoS

Table 12: IDS based on Physical Characteristics
Authors Type Layer Detecting

threshold
Detection
mechanism

Attacks
Detected Prevention

[134] Signal and
Voltage based

Physical
layer
(Transceiver
layer)

Detect attacks based
on changes on
(signal and voltage)
characteristics

measure the unique
signal for
each ECU and detect
unusual behaviour

physical layer attacks such as
over-current
DoS bus idle and error frame
re-transmission. Will not work in
ECU impersonation attack

Yes

[135] Voltage Profile
for each ECU

Physical
layer

The changes
of voltage
on the line

each ECU has its own
unique voltage profile

Any data generated
from unfamiliar
ECU voltage will
be detected

Yes

[136]

Electrical CAN
signals

as a fingerprint
for ECUs

Physical
layer

Change in the electric
signal of each ECU

Change in the electrical signals
on the bus and comparing
the fingerprint of the ECU

Off bus attack Yes

detects attacks based on changes in characteristics for each ECU. This approach can be used to detect unusual signals
at the physical layer to overcome attacks such as over current, DoS and error frame re-transmission. In [135], the
authors proposed a clock-based IDS to detect anomalies. They build a fingerprint for each ECU based on measuring
and extracting the periodic frequency of messages sent by ECUs. They have used the fingerprint of each ECU to build a
baseline behaviour of the ECU clock using Recursive Least Square (RLS) algorithm. Their approach uses a Cumulative
Sum (CUSUM) to detect any significant deviation from the normal fingerprint baseline. In [136], the authors introduced
a Voltage-IDS which is based on the use of electrical CAN signals as a fingerprint for ECUs. Their approach was also
used to detect an off-bus attack where an ECU is blocked and the attacker mimics a disabled ECU.

Comparing IDS: as mentioned previously, an IDS is used to detect malicious CAN attacks. Signature based IDS has
been shown to detect attacks with low false positives however an attack signature needs to be extracted from the CAN
bus. Therefore new CAN attacks can be difficult to identify. It is also difficult to detect attacks on a moving car to
extract attack signature and CAN messages. Anomaly or behavior-based IDS has the advantage that it can detect and
predict attacks based on the training and learning process and can in some cases be used without the need for more
training. IDS based on machine learning can benefit from raw data directly extracted from vehicles. Machine learning
(ML) approaches can also handle multiple variable instances as vehicles generate large amounts of data which needs to

27

A PREPRINT - APRIL 24, 2020

be pre-processed in order to be meaningful. This problem can be overcome using unsupervised ML which can classify
patterns and detect anomalies in unlabeled raw data.

7 Limitations with Current Approaches

Based on the survey in previous sections, we now describe limitations with current approaches for securing in-vehicle
systems (particularly focusing on the CAN bus). The implementation of a CAN cryptographic algorithm should
consider the unique nature of the protocol, the limited network infrastructure (with support for limited data payload)
and computationally constrained ECU specification. The algorithms should also consider the broadcast nature of the
CAN bus, key distribution and freshness to avoid replay attacks. Real time sensitivity is a concern inside vehicles since
critical services and functions are sensitive to latency. Therefore, any countermeasure should consider these criteria.

LIMITATIONS
WITH CURRENT
APPROACHES

Intrusion
Detection
Systems

Training data
Software based

cryptography

Bus load and

Message latency

Hardware based

Cyptography

Cost of

implementation

Detection

latency

Prevention
Modify CAN bus

behaviour

Positive and
negative Rate

detection

Cryptography

Changing CAN

bus behaviour

Figure 17: Research Challenges: Cryptography and IDS based approaches

7.1 Cryptography

Hardware based cryptography: hardware mechanisms can be used to speed up the process of generating cryptographic
functions for in-vehicle networks. Depending on the number of ECUs (typically 70), each ECU would need to be updated
to include hardware-based cryptography. While this approach can increase and speed up the process of cryptographic
mechanisms to meet real time needs, it is not compatible with current vehicles and the cost of implementation can be
significant. Future CAN FD boards are expected to be embedded with hardware supported security mechanisms such as
AES and embedded authentication [137]. Also, better computational resources are expected in the next generation of
CAN FD ECUs to handle the higher bit rate and data payload size needed.

Software based cryptography: the main approaches to provide security for a CAN bus is using encryption and
authentication mechanisms without the need for additional hardware or modification to existing ECUs. Authentication
approaches are less computationally expensive, as they add additional information within an existing data payload.
However, with the large number of ECUs inside vehicles, current approaches have not validated their approach using
this large number. In [138], the authors evaluated 10 CAN MAC approaches against industrial criteria and they indicated
that some of these approaches are applicable to a subset of the network with a very limited number of ECUs.

Message latency: vehicles utilise several real time functions for which latency can threaten safety on the road.
Therefore, encryption mechanisms should provide security and reduce message latency to a minimum. This process
overcomes the limited computational resources inside current vehicle ECUs. Further, the payload size of a classical
CAN bus makes it difficult to add secure tags and signatures along with actual data. Therefore authentication and
encryption focus on lightweight mechanisms using MAC tags without encrypting the whole payload. The CAN bus
should not be loaded with extra security related messages, e.g. by splitting CAN bus messages, one message for the
actual data and the other for authentication of the message. This can increase bus load two folds, and therefore affect
the quality of the network.

28

A PREPRINT - APRIL 24, 2020

Changing CAN bus behaviour: some approaches change the CAN protocol by either changing the payload size or
splitting a message into data and authentication messages. Furthermore, other approaches have changed CAN frame
structure by replacing and inserting MAC tags and signatures inside CRC fields and CAN identifier fields. This can
lead to incompatibility issues with ECUs and add additional complexity to the current CAN bus. Other approaches
extended CAN payload size to 16 byte CAN+ which also causes incompatibility, as ECU controller and transceiver
needs to be changed in order to support this extended frame size.

7.2 Intrusion Detection System

Complexity: since there is no global attack signature database, an IDS needs to collect and analyse CAN network data
in order to build an attacks signature database. Furthermore, it is dangerous to perform attacks on moving vehicle to
extract attack signatures and maintain them.

Computational resources: very few approaches have validated their approach in a testbed that contains resources with
representative computational capabilities to a vehicular network. ML based IDS may have high computational resource
requirements, however ECU resources which exist inside vehicles may not be able to handle this workload. In [107]
and [109] the authors suggest that dedicated hardware is needed to deploy such approaches. Furthermore, their idea is
that a statistical based IDS can be a lighter approach that can be applicable in current vehicle networks. Similarly, in
[139] authors have examined the use of IDS based on neural networks and they recommend that it is difficult to use
them in current vehicle networks due to the large memory and computational time needed and they have suggested a
dedicated hardware. In other approach [113], authors have inserted an IDS in OBD-2 port using raspberry pi board and
they said that this approach can be used in current vehicles and embed in future vehicles. This can be a good approach
to avoid the constrained power in current vehicles.

Modify CAN bus behaviour: IDS approaches work in a passive manner where they don’t require to change the CAN
bus protocol behaviour. They only monitor, detect malicious attacks and report them, for example, to the driver and
fleet management centre.

Detection latency: In current vehicle networks, ECUs have low computational power, thereby limiting the potential
to implement IDS based on deep learning. In [48], authors indicate that an IDS based on deep learning incurs a high
latency due to increased processing time. They therefore located their deep learning model in the cloud and provide
offline detection for vehicles from a central point. However, they acknowledged that offloading data from a vehicle to a
cloud platform requires a stable network connection. Also, real time detection is needed for passenger safety, for which
an IDS based on the cloud may not be able to offer. Alternatively, authors in [140] have suggested to put Edge E-IDS in
OBD-2 port as a plug in dongle to detect attacks and process data at the network edge before utilising a cloud platform.

Cost of implementation: It is worth noting that an IDS can be installed in each ECU, as a Host-IDS, to detect
attacks [87] – however, this can lead to incompatibility and high deployment cost. Therefore, installing an IDS as a
network node such as an IDS-OBD-2 dongle can be more feasible and practical and does not need CAN bus modification
[88].

Positive and Negative Rate detection: IDS should work and detect attacks at runtime with the intention to minimise
false positives. According to [97], a false positive rate of 0.0001 percent can cause 5 false positives every 1 hour in a
CAN network broadcasts 1500 frames per second. Therefore, an IDS should carefully verify their decisions. In [98],
authors evaluated four types of IDS, information entropy, CAN ID sequence, message frequency and throughput based
IDSs. They evaluated these IDSs based on the positive and negative detection rate. They tested them offline against four
known attacks, packet dropping, spoofing, replay and flooding attacks. They found different negative and positive rates
for each attack in each type of IDS they evaluated.

Training data: IDS need either a database of CAN attacks (signatures) to be able to detect malicious attacks or by
analysing a CAN data set offline to extract normal behaviour. While there is no global signature database of attacks,
a signature database should be built by analysing normal CAN traffic along with generating various CAN attacks.
However, attacks on vehicles continue to emerge and signatures of all known attacks are difficult to be maintained and
updated to detect new attacks.

Prevention: Some approaches focus on preventing attacks rather than passively detecting them. A combination of
hardware and software-based IDS techniques are needed to be more effective to prevent attacks.

8 Conclusion

Cryptographic mechanisms have been used to secure the CAN bus from attacks that originate from inside the vehicle,
or when an external attacker can get access to the CAN bus. However, it may be difficult to use encryption because

29

A PREPRINT - APRIL 24, 2020

of the lack of computational resources in current ECUs, and the small data payload size and low data bit rate of the
CAN bus network. Additionally, decision making within vehicles requires real time data analysis, and any delay
due to data encryption can lead to safety issues on the road. In contrast, IDS operates as a countermeasure inside a
vehicles and works in a passive manner. An IDS does not require a change in the network and protocol specifications
compared to some cryptographic methods. However, some IDS based on deep learning, for instance, requires significant
computational resources not available within a vehicle.

For the current classical CAN bus vehicle networks, edge ECU devices can be used to manage countermeasures e.g
(1) monitoring and management of message authentication and encryption mechanisms, while in (2) IDS approaches,
edge ECU devices can be used as a plug in edge device e.g inside OBD-2, telematics and infotainment interfaces to
support edge IDS mechanisms, detect attacks, process vehicular data and push it for further analysis (e.g OEM and
fleet management clouds) such as diagnostics and attack analysis. These edge ECUs devices can provide suitable
resources to support countermeasures and can be used in current vehicles with limited CAN bus modifications. If ECU
modification are needed, for example to support authentication and contact with edge ECU monitoring devices, OEMs
and car makers should consider update ECU capabilities, e.g. over-the-air updates.

As CAN FD is the improved version of the classical CAN bus, it is already implemented inside many new vehicles.
Many OEMs are expected to use CAN FD by 2022 in the US and Europe [141]. The next generation CAN FD is
expected to provide better resources e.g. higher data bit rate, payload size and support for embedded encryption methods.
As a result, vehicles based on CAN FD can overcome current ECU shortcomings. Other additional capabilities incude:
(1) Better ECUs to handle higher data payload, (2) embedded cryptographic algorithms such as Advanced Encryption
Standard (AES) and better data bit rate. Therefore, suppliers, car makers and OEMs can embed countermeasures
e.g IDS, encryption and message authentication along with firewall and access control lists for external CAN bus
connections.

Communication outside CAN bus such as telematics, infotainment and wireless sensor interfaces along with Dedicated
Short-Range Communications (DSRC) for Vehicle-2-Vehicle (V2V) and Vehicle-2-Infrastructure (V2I) should be
protected, as they are entry points for data injection to the internal vehicle CAN bus network.

Although a number of bus architectures have been introduced – e.g. FlexRay and LIN, it is important to highlight that
the CAN bus remains the most widely used standard in the automotive industry. As outlined in this paper, a number of
improvements have been made by vehicle manufacturers to the CAN bus over the years –e.g. to support higher data
rates for connected and autonomous cars – such as in CAN FD and CAN XL. Also, since CAN bus protocol is used
inside both electric and autonomous cars [142], and due to the significant interest in these types of vehicles, interest in
cybersecurity of the CAN bus protocol will continue to grow.

References

[1] The Institution of Engineering and Technology. Serious cyber-security flaws uncovered in Ford and Volkswagen
cars | E&T Magazine, 2020.

[2] Juan Deng, Lu Yu, Yu Fu, Oluwakemi Hambolu, and Richard R. Brooks. Security and Data Privacy of Modern
Automobiles. 2017.

[3] Roderick Currie. Information Security Reading Room Developments in Car Hacking. 2015.

[4] Nicolas Navet, Yeqiong Song, Françoise Simonot-Lion, and Cédric Wilwert. Trends in automotive communica-
tion systems. Proceedings of the IEEE, 93(6):1204–1222, 2005.

[5] Tianxiang Huang, Jianying Zhou, Yi Wang, and Anyu Cheng. On the security of in-vehicle hybrid network:
Status and challenges. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 10701 LNCS, pages 621–637. Springer, Cham, dec
2017.

[6] International Organization for Standardization. ISO 11898-1:2015 - Road vehicles – Controller area network
(CAN) – Part 1: Data link layer and physical signalling, 2015.

[7] Tae Un Kang, Hyun Min Song, Seonghoon Jeong, and Huy Kang Kim. Automated Reverse Engineering and
Attack for CAN Using OBD-II. IEEE Vehicular Technology Conference, 2018-Augus:1–7, 2018.

[8] CiA. CAN in Automation (CiA): CAN XL is knocking at the door, 2020.

[9] Robert Bosch GmbH. CAN XL News text | Bosch Semiconductors, 2019.

[10] ISO. ISO 17987: Road vehicles — Local Interconnect Network (LIN) Part 1 : General information and use
case definition. Technical report, 2016.

30

A PREPRINT - APRIL 24, 2020

[11] Kim Seung-Han, Seo Suk-Hyun, Kim Jin-Ho, Moon Tae-Yoon, Son Chang-Wan, Hwang Sung-Ho, and Jeon Jae
Wook. A gateway system for an automotive system: LIN, CAN, and flexray. IEEE International Conference on
Industrial Informatics (INDIN), pages 967–972, 2008.

[12] National Instruments. FlexRay Automotive Communication Bus Overview, 2019.
[13] ISO 10681-1:2010. Road vehicles – Communication on FlexRay – Part 1: General information and use case

definition. 2010.
[14] Omid Avatefipour and Hafiz Malik. State-of-the-Art Survey on In-Vehicle Network Communication (CAN-Bus)

Security and Vulnerabilities. 2018.
[15] Wilrid Dubitzky and Turgut Karacay. CAN – From its early days to CAN FD. CAN Newsletter, pages 8–11,

2013.
[16] Sasan Jafarnejad, Lara Codeca, Walter Bronzi, Raphael Frank, and Thomas Engel. A car hacking experiment:

When connectivity meets vulnerability. 2015 IEEE Globecom Workshops, GC Wkshps 2015 - Proceedings, (May
2016), 2015.

[17] CAN in Automation. CAN in Automation, 2013.
[18] Robert Bosch Gmbh. Robert Bosch Gmbh: CAN Specification Version 2.0. 1991.
[19] KVASER. KVASER.
[20] Bomu Cheon and Jae Wook Jeon. The CAN FD network performance analysis using the CANoe. In 2013 44th

International Symposium on Robotics, ISR 2013, 2013.
[21] CAN in Automation. CAN in Automation (CiA): CAN FD - The basic idea. www.can-cia.org.
[22] International Organization for Standardization. Road vehicles - Safety of the intended functionality, 2019.
[23] Standard of Automotive Engineering. J3061A (WIP) Cybersecurity Guidebook for Cyber-Physical Vehicle

Systems - SAE International, 2016.
[24] SAE International. Requirements for Hardware-Protected Security for Ground Vehicle Applications - J3101.

SAE, 2012.
[25] Standard of Automotive Engineering. J3138: Diagnostic Link Connector Security - SAE International, 2018.
[26] Angela Barber. Status of Work in Process on ISO/SAE 21434 Automotive Cybersecurity Standard. pages 1–25,

2018.
[27] Hervé Seudié. Vehicular On-board Security : EVITA Project Project. In Forum American Bar Association,

number November, 2009.
[28] SeVeCom (Secure Vehicular Communication). Sevecom, 2008.
[29] CVIS Cooperative Vehicle-Infrastructure Systems. CVIS Cooperative Vehicle-Infrastructure Systems. Technical

report, 2010.
[30] Society of Automotive Engineers. SAE J1939 Standards Collection, 2007.
[31] VECTOR. SAE J1939 Know-how | Vector.
[32] Microchip. Mcp2515 Notes. page 94, 2003.
[33] David Wampler, Huirong Fu, and Ye Zhu. Security threats and countermeasures for intra-vehicle networks. 5th

International Conference on Information Assurance and Security, IAS 2009, 2:153–157, 2009.
[34] Andrew Tomlinson, Jeremy Bryans, Siraj Ahmed Shaikh, and Harsha Kumara Kalutarage. Detection of

Automotive CAN Cyber-Attacks by Identifying Packet Timing Anomalies in Time Windows. Proceedings - 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops, DSN-W 2018,
pages 231–238, 2018.

[35] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. Anomaly detection in automobile control network data
with long short-term memory networks. Proceedings - 3rd IEEE International Conference on Data Science and
Advanced Analytics, DSAA 2016, pages 130–139, 2016.

[36] Qiyan Wang and Sanjay Sawhney. VeCure: A practical security framework to protect the CAN bus of vehicles.
In 2014 International Conference on the Internet of Things, IOT 2014, pages 13–18. IEEE, oct 2014.

[37] Anon. National Instruments. Scientific Computing and Instrumentation, 17(1):48, 1999.
[38] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno, Stephen Checkoway, Damon

Mccoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Savage, Hovav Snachám, and Stefan Savage.
Experimental security analysis of a modern automobile. Proceedings - IEEE Symposium on Security and Privacy,
pages 447–462, 2010.

31

A PREPRINT - APRIL 24, 2020

[39] Juniper Research. In-Vehicle Commerce Connected Cars to Exceed 775 Million by 2023, 2018.

[40] Stephen Checkoway and D McCoy. Comprehensive experimental analyses of automotive attack surfaces.
Proceedings of the 20th USENIX conference on Security, page 6, 2011.

[41] Madeline Cheah, Jeremy Bryans, Daniel S. Fowler, and Siraj Ahmed Shaikh. Threat Intelligence for Bluetooth-
Enabled Systems with Automotive Applications: An Empirical Study. Proceedings - 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops, DSN-W 2017, pages 36–43, 2017.

[42] Dennis Kengo Oka, Takahiro Furue, Lennart Langenhop, and Tomohiro Nishimura. Survey of vehicle IoT
bluetooth devices. In Proceedings - IEEE 7th International Conference on Service-Oriented Computing and
Applications, SOCA 2014, pages 260–264. Institute of Electrical and Electronics Engineers Inc., dec 2014.

[43] Charlie Miller and Chris Valasek. Remote Exploitation of an Unaltered Passenger Vehicle. Defcon 23, 2015:1–91,
2015.

[44] Keen Security Lab. FREE-FALL : TESLA HACKING 2016 Who we are && What we did. 2016.

[45] Daniel S. Fowler, Jeremy Bryans, Siraj Ahmed Shaikh, and Paul Wooderson. Fuzz Testing for Automotive
Cyber-Security. Proceedings - 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops, DSN-W 2018, pages 239–246, 2018.

[46] Zeljka Zorz. Backdooring connected cars for covert remote control - Help Net Security, 2018.

[47] Pradeep Sharma Oruganti, Matt Appel, and Qadeer Ahmed. Hardware-in-loop based Automotive Embedded
Systems Cybersecurity Evaluation Testbed. AutoSec 2019 - Proceedings of the ACM Workshop on Automotive
Cybersecurity, co-located with CODASPY 2019, pages 41–44, 2019.

[48] George Loukas, Tuan Vuong, Ryan Heartfield, Georgia Sakellari, Yongpil Yoon, and Diane Gan. Cloud-Based
Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning. IEEE Access, 6:3491–3508, 2017.

[49] Sangho Ohb Ishtiaq Roufa, Rob Millerb, Hossen Mustafaa, Travis Taylora and Ivan Seskarb Wenyuan Xua,
Marco Gruteserb, Wade Trappeb. Security and privacy vulnerabilities of in-car wireless networks. 2012.

[50] Jonathan; Petit, Bas Stottelaar, Michael Feiri, and Frank Kargl. Remote Attacks on Automated Vehicles Sensors:
Experiments on Camera and LiDAR. Blackhat.com, pages 1–13, 2015.

[51] Upstream Security and Global Automotive. UPSTREAM SECURITY’s Global Automotive Cybersecurity
Report. Technical report, 2019.

[52] Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud Salmasizadeh, and Moham-
mad T.Manzuri Shalmani. On the power of power analysis in the real world: A complete break of the KeeLoq
code hopping scheme. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 5157 LNCS, pages 203–220, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[53] Wufei Wu, Renfa Li, Guoqi Xie, Jiyao An, Yang Bai, Jia Zhou, and Keqin Li. A Survey of Intrusion Detection
for In-Vehicle Networks. IEEE Transactions on Intelligent Transportation Systems, PP(1):1–15, 2019.

[54] Charlie Miller and Chris Valasek. A Survey of Remote Automotive Attack Surfaces. Technical White Paper,
pages 1–90, 2014.

[55] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security threats to automotive CAN networksPractical examples
and selected short-term countermeasures. Reliability Engineering and System Safety, 96(1):11–25, 2011.

[56] Ishtiaq Rouf, Rob Miller, Hossen Mustafa, Travis Taylor, Sangho Oh, Wenyuan Xu, Marco Gruteser, Wade
Trappe, and Ivan Seskar. Security and privacy vulnerabilities of in-car wireless networks: A tire pressure
monitoring system case study. In Proceedings of the 19th USENIX Security Symposium, pages 323–338, 2010.

[57] Jihas Khan. Vehicle network security testing. Proceedings of 2017 3rd IEEE International Conference on
Sensing, Signal Processing and Security, ICSSS 2017, pages 119–123, 2017.

[58] Mirco Marchetti and Dario Stabili. Anomaly detection of CAN bus messages through analysis of ID sequences.
IEEE Intelligent Vehicles Symposium, Proceedings, (Iv):1577–1583, 2017.

[59] Chris Culling. Information Security Reading Room Which YARA Rules Rule : Basic or Advanced ? Th e In st
itu te , A ho r R et ai ns ll Ri gh ts. (Security 503), 2017.

[60] Kazuki Iehira, Hiroyuki Inoue, and Kenji Ishida. Spoofing attack using bus-off attacks against a specific ECU of
the CAN bus. CCNC 2018 - 2018 15th IEEE Annual Consumer Communications and Networking Conference,
2018-Janua:1–4, 2018.

32

A PREPRINT - APRIL 24, 2020

[61] Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede. CANAuth - A Simple, Backward Compatible
Broadcast Authentication Protocol for CAN bus. In ECRYPT Workshop on Lightweight Cryptography, number
November 2011, pages 299–235, 2011.

[62] Stefan Nürnberger and Christian Rossow. vatiCAN: Vetted, authenticated CAN bus. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
9813 LNCS, pages 106–124. Springer Verlag, 2016.

[63] Andreea Ina Radu and Flavio D Garcia. LeiA: A lightweight authentication protocol for CAN. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 9879 LNCS, pages 283–300, 2016.

[64] Hiroshi Ueda, Ryo Kurachi, Hiroaki Takada, Tomohiro Mizutani, Masayuki Inoue, and Satoshi Horihata. Security
authentication system for in-vehicle network. SEI Technical Review, (81):5–9, 2015.

[65] NIST. The Keyed-Hash Message Authentication Code. Federal Information Processing Standard Publication,
198(July):1–20, 2008.

[66] Quynh Dang, Rebecca M Blank, and Patrick Gallagher. NIST Special Publication 800-107 Revision 1 Recom-
mendation for Applications Using Approved Hash Algorithms. Technical report, 2012.

[67] Dennis K. Nilsson, Ulf E. Larson, and Erland Jonsson. Efficient in-vehicle delayed data authentication based on
compound message authentication codes. IEEE Vehicular Technology Conference, pages 1–5, 2008.

[68] Ahmed Hazem and Hossam A H Fahmy. LCAP - A Lightweight CAN Authentication Protocol for Securing
In-Vehicle Networks. 10th escar Europe 2012, 2012.

[69] Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and Ingrid Verbauwhede. LiBrA-CAN: A lightweight
broadcast authentication protocol for controller area networks. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 7712 LNCS,
pages 185–200, 2012.

[70] Giampaolo Bella, Pietro Biondi, Gianpiero Costantino, and Ilaria Matteucci. TOUCAN: A proTocol to secUre
Controller Area Network. AutoSec 2019 - Proceedings of the ACM Workshop on Automotive Cybersecurity,
co-located with CODASPY 2019, pages 3–8, 2019.

[71] Sebastian Bittl. Attack potential and efficient security enhancement of automotive bus networks using short
MACs with rapid key change. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 8435 LNCS:113–125, 2014.

[72] Ryo Kurachi, Yutaka Matsubara, Hiroaki Takada, Naoki Adachi, Yukihiro Miyashita, and Satoshi Horihata.
CaCAN - Centralized Authentication System in CAN. 12th Embedded Security in Cars Europe, (November
2014), 2014.

[73] Ki Dong Kang, Youngmi Baek, Seonghun Lee, and Sang Hyuk Son. An Attack-Resilient Source Authentication
Protocol in Controller Area Network. Proceedings - 2017 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS 2017, pages 109–118, 2017.

[74] Samir Fassak, Younes El Hajjaji El Idrissi, Noureddine Zahid, and Mohamed Jedra. A secure protocol for session
keys establishment between ECUs in the CAN bus. Proceedings - 2017 International Conference on Wireless
Networks and Mobile Communications, WINCOM 2017, (June 2018), 2017.

[75] Bogdan Groza and Stefan Murvay. Efficient protocols for secure broadcast in controller area networks. IEEE
Transactions on Industrial Informatics, 9(4):2034–2042, 2013.

[76] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee. A Practical Wireless Attack on the Connected Car and Security
Protocol for In-Vehicle CAN. IEEE Transactions on Intelligent Transportation Systems, 16(2):993–1006, 2015.

[77] Yujing Wu, Yeon Jin Kim, Zheyan Piao, Jin Gyun Chung, and Yong En Kim. Security protocol for controller
area network using ECANDC compression algorithm. ICSPCC 2016 - IEEE International Conference on Signal
Processing, Communications and Computing, Conference Proceedings, pages 1–4, 2016.

[78] Chung Wei Lin and Alberto Sangiovanni-Vincentelli. Cyber-security for the Controller Area Network (CAN)
communication protocol. Proceedings of the 2012 ASE International Conference on Cyber Security, CyberSecu-
rity 2012, (SocialInformatics):1–7, 2012.

[79] Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and Ingrid Verbauwhede. LiBrA-CAN: Lightweight
broadcast authentication for controller area networks. ACM Transactions on Embedded Computing Systems,
16(3), 2017.

33

A PREPRINT - APRIL 24, 2020

[80] Luca Dariz, Michele Selvatici, Massimiliano Ruggeri, Gianpiero Costantino, and Fabio Martinelli. Trade-off
analysis of safety and security in CAN bus communication. 5th IEEE International Conference on Models and
Technologies for Intelligent Transportation Systems, MT-ITS 2017 - Proceedings, pages 226–231, 2017.

[81] AS Siddiqui, Y Gui, J Plusquellic 2017 IEEE 60th . . . , and Undefined 2017. Secure communication over
CANBus. ieeexplore.ieee.org, 2017.

[82] Wael A. Farag. CANTrack: Enhancing automotive CAN bus security using intuitive encryption algorithms. 2017
7th International Conference on Modeling, Simulation, and Applied Optimization, ICMSAO 2017, pages 1–5,
2017.

[83] Samuel Woo, Hyo Jin Jo, In Seok Kim, and Dong Hoon Lee. A practical security architecture for in-vehicle
CAN-FD. IEEE Transactions on Intelligent Transportation Systems, 17(8):2248–2261, 2016.

[84] Megha Agrawal, Tianxiang Huang, Jianying Zhou, and Donghoon Chang. CAN-FD-Sec: Improving Security
of CAN-FD Protocol. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 11552 LNCS, pages 77–93. Springer Verlag, 2019.

[85] Guillaume Carel, Ryunosuke Isshiki, Takuya Kusaka, Yasuyuki Nogami, and Shunsuke Araki. Design of a
message authentication protocol for CAN FD based on chaskey lightweight MAC. Proceedings - 2018 6th
International Symposium on Computing and Networking Workshops, CANDARW 2018, pages 267–271, 2018.

[86] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Applying Intrusion Detection to Automotive IT – Early Insights
and Remaining Challenges. Journal of Information Assurance and Security, 4(January 2009):226–235, 2009.

[87] Ulf E. Larson, Dennis K. Nilsson, and Erland Jonsson. An approach to specification-based attack detection for
in-vehicle networks. IEEE Intelligent Vehicles Symposium, Proceedings, pages 220–225, 2008.

[88] Clinton Young, Habeeb Olufowobi, Gedare Bloom, and Joseph Zambreno. Automotive Intrusion Detection
Based on Constant CAN Message Frequencies Across Vehicle Driving Modes. 2019.

[89] Charlie Miller and Chris Valasek. OG Dynamite Edition. 2016.

[90] Michael Müter, André Groll, and Felix C. Freiling. A structured approach to anomaly detection for in-vehicle
networks. 2010 6th International Conference on Information Assurance and Security, IAS 2010, pages 92–98,
2010.

[91] Hyun Min Song, Jiyoung Woo, and Huy Kang Kim. In-vehicle network intrusion detection using deep convolu-
tional neural network. Vehicular Communications, 21:100198, 2020.

[92] A S Syed Navaz, V. Sangeetha, C. Prabhadevi, A. S.SyedNavaz, V. Sangeetha, and C. Prabhadevi. Entropy based
Anomaly Detection System to Prevent DDoS Attacks in Cloud. International Journal of Computer Applications,
62(15):42–47, 2013.

[93] Dario Stabili, Mirco Marchetti, and Michele Colajanni. Detecting attacks to internal vehicle networks through
Hamming distance. 2017 AEIT International Annual Conference: Infrastructures for Energy and ICT: Opportu-
nities for Fostering Innovation, AEIT 2017, 2017-Janua:1–6, 2017.

[94] Ivan Studnia, Eric Alata, Vincent Nicomette, Mohamed Kaâniche, and Youssef Laarouchi. A language-based
intrusion detection approach for automotive embedded networks. International Journal of Embedded Systems,
10(1):1–12, 2018.

[95] Omid Avatefipour, Ameena Saad Al-Sumaiti, Ahmed M. El-Sherbeeny, Emad Mahrous Awwad, Mohammed A.
Elmeligy, Mohamed A. Mohamed, and Hafiz Malik. An intelligent secured framework for cyberattack detection
in electric vehicles’ can bus using machine learning. IEEE Access, 7:127580–127592, 2019.

[96] Tsvika Dagan and Avishai Wool. Parrot, a software-only anti-spoofing defense system for the CAN bus. 14th
Embedded Security in Cars (escar), page 10, 2016.

[97] Andrew Tomlinson, Jeremy Bryans, and Siraj Ahmed Shaikh. Towards Viable Intrusion Detection Methods For
The Automotive Controller Area Network. Cscs, 2018.

[98] Haojie Ji, Yunpeng Wang, Hongmao Qin, Yongjian Wang, and Honggang Li. Comparative performance
evaluation of intrusion detection methods for In-Vehicle networks. IEEE Access, 6:37523–37532, jun 2018.

[99] Congli Ling and Dongqin Feng. An algorithm for detection of malicious messages on CAN buses. Proceedings
of the 2012 National Conference on Information Technology and Computer Science, CITCS 2012, 2012.

[100] Kyong-Tak Cho and Kang G Shin. Fingerprinting Electronic Control Units for Vehicle Intrusion Detection.
pages 911–927, 2016.

34

A PREPRINT - APRIL 24, 2020

[101] Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. Intrusion detection system based on the analysis of
time intervals of CAN messages for in-vehicle network. International Conference on Information Networking,
2016-March:63–68, 2016.

[102] Mabrouka Gmiden, Mohamed Hedi Gmiden, and Hafedh Trabelsi. An intrusion detection method for securing
in-vehicle CAN bus. 2016 17th International Conference on Sciences and Techniques of Automatic Control and
Computer Engineering, STA 2016 - Proceedings, pages 176–180, 2017.

[103] Adrian Taylor, Nathalie Japkowicz, and Sylvain Leblanc. Frequency-based anomaly detection for the automotive
CAN bus. In 2015 World Congress on Industrial Control Systems Security, WCICSS 2015, pages 45–49.
Infonomics Society, 2015.

[104] Hyunsung Lee, Seong Hoon Jeong, and Huy Kang Kim. OTIDS: A novel intrusion detection system for
in-vehicle network by using remote frame. Proceedings - 2017 15th Annual Conference on Privacy, Security and
Trust, PST 2017, pages 57–66, 2018.

[105] Michael Müter and Naim Asaj. Entropy-based anomaly detection for in-vehicle networks. IEEE Intelligent
Vehicles Symposium, Proceedings, (Iv):1110–1115, 2011.

[106] Mirco Marchetti, Dario Stabili, Alessandro Guido, and Michele Colajanni. Evaluation of anomaly detection for
in-vehicle networks through information-theoretic algorithms. 2016 IEEE 2nd International Forum on Research
and Technologies for Society and Industry Leveraging a Better Tomorrow, RTSI 2016, pages 1–6, 2016.

[107] Wufei Wu, Yizhi Huang, Ryo Kurachi, Gang Zeng, Guoqi Xie, Renfa Li, and Keqin Li. Sliding Window
Optimized Information Entropy Analysis Method for Intrusion Detection on In-Vehicle Networks. IEEE Access,
6:45233–45245, 2018.

[108] Ching Hsien Hsu, Feng Xia, Xingang Liu, and Shangguang Wang. Internet of Vehicles - Safe and Intelligent
Mobility: Second International Conference, IOV 2015 Chengdu, China, December 19-21, 2015 Proceedings.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 9502:89–97, 2015.

[109] Takuma Koyama, Toshiki Shibahara, Keita Hasegawa, Yasushi Okano, Masashi Tanaka, and Yoshihito Oshima.
Anomaly Detection for Mixed Transmission CAN Messages Using Quantized Intervals and Absolute Difference
of Payloads. AutoSec 2019 - Proceedings of the ACM Workshop on Automotive Cybersecurity, co-located with
CODASPY 2019, pages 19–24, 2019.

[110] Habeeb Olufowobi, Uchenna Ezeobi, Eric Muhati, Gaylon Robinson, Clinton Young, Joseph Zambreno, and
Gedare Bloom. Anomaly Detection Approach Using Adaptive Cumulative Sum Algorithm for Controller Area
Network. In AutoSec 2019 - Proceedings of the ACM Workshop on Automotive Cybersecurity, co-located with
CODASPY 2019, pages 25–30. ACM, 2019.

[111] Chundong Wang, Zhentang Zhao, Liangyi Gong, Likun Zhu, Zheli Liu, and Xiaochun Cheng. A Distributed
Anomaly Detection System for In-Vehicle Network Using HTM. IEEE Access, 6:9091–9098, 2018.

[112] Qian Wang, Zhaojun Lu, and Gang Qu. An Entropy Analysis Based Intrusion Detection System for Controller
Area Network in Vehicles. International System on Chip Conference, 2018-Septe:174–179, 2019.

[113] Sandeep Nair Narayanan, Sudip Mittal, and Anupam Joshi. OBD_SecureAlert: An Anomaly Detection System
for Vehicles. In 2016 IEEE International Conference on Smart Computing (SMARTCOMP), pages 1–6. IEEE,
may 2016.

[114] Matan Levi, Yair Allouche, and Aryeh Kontorovich. Advanced Analytics for Connected Car Cybersecurity.
IEEE Vehicular Technology Conference, 2018-June:1–7, 2018.

[115] Andreas Theissler. Anomaly detection in recordings from in-vehicle networks. Big Data Applications and
Principles, (September 2014):12, 2014.

[116] Min Joo Kang and Je Won Kang. Intrusion detection system using deep neural network for in-vehicle network
security. PLoS ONE, 11(6):1–17, 2016.

[117] Parnian Najafi Borazjani, Christopher E Everett, and Damon Mccoy. OCTANE: An Extensible Open Source Car
Security Testbed. Embedded Security In Cars (ESCAR), pages 1–10, 2014.

[118] Eunbi Seo, Hyun Min Song, and Huy Kang Kim. GIDS: GAN based Intrusion Detection System for In-Vehicle
Network. 2018 16th Annual Conference on Privacy, Security and Trust, PST 2018, 2018.

[119] Krzysztof Pawelec, Robert A Bridges, and Frank L Combs. Towards a CAN IDS Based on a Neural Network
Data Field Predictor. In AutoSec 2019 - Proceedings of the ACM Workshop on Automotive Cybersecurity,
co-located with CODASPY 2019, pages 31–34, 2019.

35

A PREPRINT - APRIL 24, 2020

[120] Markus Hanselmann, Thilo Strauss, Katharina Dormann, and Holger Ulmer. CANet: An Unsupervised Intrusion
Detection System for High Dimensional CAN Bus Data. IEEE Access, pages 1–1, 2020.

[121] Siti Farhana Lokman, Abu Talib Othman, Shahrulniza Musa, and Muhamad Husaini Abu Bakar. Deep Contractive
Autoencoder-Based Anomaly Detection for In-Vehicle Controller Area Network (CAN). In Advanced Structured
Materials, volume 119, pages 195–205. Springer Verlag, 2019.

[122] Siti Farhana Lokman. Stacked Sparse Autoencoders-Based Outlier Discovery for In-Vehicle Stacked Sparse
Autoencoders-Based Outlier Discovery for In-Vehicle Controller Area Network (CAN). Article in International
Journal of Engineering and Technology, 7(August):375–380, 2019.

[123] Priyanka Sharma and Dietmar P.F. Moller. Protecting ECUs and Vehicles Internal Networks. IEEE International
Conference on Electro Information Technology, 2018-May(1):465–470, 2018.

[124] Hiroki Suda, Masanori Natsui, and Takahiro Hanyu. Systematic intrusion detection technique for an in-vehicle
network based on time-series feature extraction. Proceedings of The International Symposium on Multiple-Valued
Logic, 2018-May:56–61, 2018.

[125] Marc Weber, Simon Klug, Eric Sax, Bastian Zimmer, Marc Weber, Simon Klug, Eric Sax, Bastian Zimmer,
Embedded Hybrid, Anomaly Detection, Marc Weber, Simon Klug, Eric Sax, and Bastian Zimmer. CAN
Communication To cite this version : HAL Id : hal-01716805 Embedded Hybrid Anomaly Detection for
Automotive CAN Communication. Embedded Real Time Software and Systems ERTS2, 2018.

[126] Daxin Tian, Yuzhou Li, Yunpeng Wang, Xuting Duan, Congyu Wang, Wenyang Wang, Rong Hui, and Peng
Guo. An intrusion detection system based on machine learning for CAN-Bus. Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 221:285–294, 2018.

[127] Fabio Martinelli, Francesco Mercaldo, Vittoria Nardone, and Antonella Santone. Car hacking identification
through fuzzy logic algorithms. IEEE International Conference on Fuzzy Systems, 2017.

[128] Andrew Tomlinson, Jeremy Bryans, and Siraj Ahmed Shaikh. Using a one-class compound classifier to detect
in-vehicle network attacks. GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary
Computation Conference Companion, pages 1926–1929, 2018.

[129] Animesh Patcha and Jung Min Park. An overview of anomaly detection techniques: Existing solutions and latest
technological trends. Computer Networks, 51(12):3448–3470, aug 2007.

[130] Haider Al-Khateeb, Gregory Epiphaniou, Adam Reviczky, Petros Karadimas, and Hadi Heidari. Proactive Threat
Detection for Connected Cars Using Recursive Bayesian Estimation. IEEE Sensors Journal, 18(12):4822–4831,
jun 2018.

[131] Anatolij Bezemskij, George Loukas, Diane Gan, and Richard J. Anthony. Detecting Cyber-Physical Threats
in an Autonomous Robotic Vehicle Using Bayesian Networks. In Proceedings - 2017 IEEE International
Conference on Internet of Things, IEEE Green Computing and Communications, IEEE Cyber, Physical and
Social Computing, IEEE Smart Data, iThings-GreenCom-CPSCom-SmartData 2017, volume 2018-Janua, pages
98–103. Institute of Electrical and Electronics Engineers Inc., jan 2018.

[132] Mario Casillo, Simone Coppola, Massimo De Santo, Francesco Pascale, and Emanuele Santonicola. Embedded
Intrusion Detection System for Detecting Attacks over CAN-BUS. In 2019 4th International Conference on
System Reliability and Safety, ICSRS 2019, pages 136–141. Institute of Electrical and Electronics Engineers Inc.,
nov 2019.

[133] Valliappa Chockalingam, Ian Larson, Daniel Lin, and Spencer Nofzinger. Detecting Attacks on the CAN Protocol
With Machine Learning. 2017.

[134] Sang Uk Sagong, Radha Poovendran, and Linda Bushnell. Mitigating Vulnerabilities of Voltage-based Intrusion
Detection Systems in Controller Area Networks. arXiv preprint arXiv:1907.10783, 2019.

[135] Kyong Tak Cho and Kang G. Shin. Viden: Attacker identification on in-vehicle networks. Proceedings of the
ACM Conference on Computer and Communications Security, pages 1109–1123, 2017.

[136] Wonsuk Choi, Kyungho Joo, Hyo Jin Jo, Moon Chan Park, and Dong Hoon Lee. VoltageIDS: Low-level
communication characteristics for automotive intrusion detection system. IEEE Transactions on Information
Forensics and Security, 13(8):2114–2129, 2018.

[137] Olaf Pfeiffer and Christian Keyde. System design Security expectations vs . limitations PC / CAN Interfaces.
pages 22–25, 2018.

[138] Nasser Nowdehi, Aljoscha Lautenbach, and Tomas Olovsson. In-vehicle CAN message authentication: An
evaluation based on industrial criteria. IEEE Vehicular Technology Conference, 2017-Septe:1–7, 2018.

36

A PREPRINT - APRIL 24, 2020

[139] Camil Jichici, Bogdan Groza, and Pal Stefan Murvay. Examining the use of neural networks for intrusion
detection in controller area networks. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11359 LNCS, pages 109–125. Springer
Verlag, 2019.

[140] Fei Guo, Zichang Wang, Suguo Du, Huaxin Li, Haojin Zhu, Qingqi Pei, Zhenfu Cao, and Jianhong Zhao.
Detecting Vehicle Anomaly in the Edge via Sensor Consistency and Frequency Characteristic. In IEEE
Transactions on Vehicular Technology, volume 68, pages 5618–5628. Institute of Electrical and Electronics
Engineers Inc., jun 2019.

[141] Reiner Zitzmann. CiA CANopenFD Integration Workshop. Technical report, CAN in Automation, 2020.
[142] Mike Horton. What can a CANbus IMU do to make an autonomous vehicle safer? | Autonomous Vehicle

International, 2019.

37

	1 Introduction
	2 Automotive Serial Bus Protocols
	2.1 Controller Area Network (CAN)
	2.2 Local Interconnect Network (LIN)
	2.3 FlexRay

	3 Controller Area Network (CAN)
	3.1 Standard CAN bus Frame 2.0A
	3.2 Extended CAN bus Frame 2.0B
	3.3 Controller Area Network with Flexible Data Rate (CAN FD)
	3.4 Frame Types of CAN bus Protocol
	3.5 Cybersecurity and Safety Standards for Vehicle Networks
	3.6 CAN bus Network Infrastructure
	3.7 Automotive Application Layer Protocols
	3.8 Electronic Control Units (ECU)
	3.9 CAN bus communication
	3.10 Protocol usage

	4 Connected Car Environment
	4.1 Connected Vehicle Interfaces and Sensors

	5 Vulnerability of In-Vehicle CAN bus
	5.1 Attacks against the CAN Bus

	6 CAN bus Security Mechanisms
	6.1 In Vehicle Network Cybersecurity
	6.2 Using Cryptography
	6.3 CAN Frame Authentication
	6.4 CAN Frame Encryption
	6.5 In-Vehicle Intrusion Detection Systems
	6.6 IDS based on signature
	6.7 IDS based on Anomaly Detection
	6.8 IDS using statistical approaches
	6.9 Machine Learning-based Approaches
	6.10 IDS based on Physical Characteristics

	7 Limitations with Current Approaches
	7.1 Cryptography
	7.2 Intrusion Detection System

	8 Conclusion

